BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21204829)

  • 1. Increased GABAergic inhibition in the midline thalamus affects signaling and seizure spread in the hippocampus-prefrontal cortex pathway.
    Sloan DM; Zhang D; Bertram EH
    Epilepsia; 2011 Mar; 52(3):523-30. PubMed ID: 21204829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitatory amplification through divergent-convergent circuits: the role of the midline thalamus in limbic seizures.
    Sloan DM; Zhang D; Bertram EH
    Neurobiol Dis; 2011 Aug; 43(2):435-45. PubMed ID: 21554957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in midline thalamic recruiting responses in the prefrontal cortex of the rat during the development of chronic limbic seizures.
    Sloan DM; Bertram EH
    Epilepsia; 2009 Mar; 50(3):556-65. PubMed ID: 18801032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mediodorsal thalamus plays a critical role in the development of limbic motor seizures.
    Cassidy RM; Gale K
    J Neurosci; 1998 Nov; 18(21):9002-9. PubMed ID: 9787005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The midline thalamus: alterations and a potential role in limbic epilepsy.
    Bertram EH; Mangan PS; Zhang D; Scott CA; Williamson JM
    Epilepsia; 2001 Aug; 42(8):967-78. PubMed ID: 11554881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple roles of midline dorsal thalamic nuclei in induction and spread of limbic seizures.
    Bertram EH; Zhang D; Williamson JM
    Epilepsia; 2008 Feb; 49(2):256-68. PubMed ID: 18028408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the substantia nigra suppresses absences and clonic seizures in audiogenic rats, but not tonic seizures: evidence for seizure specificity of the nigral control.
    Deransart C; Lê-Pham BT; Hirsch E; Marescaux C; Depaulis A
    Neuroscience; 2001; 105(1):203-11. PubMed ID: 11483312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of limbic motor seizures by GABA and glutamate transmission in nucleus tractus solitarius.
    Walker BR; Easton A; Gale K
    Epilepsia; 1999 Aug; 40(8):1051-7. PubMed ID: 10448815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shortened-duration GABA(A) receptor-mediated synaptic potentials underlie enhanced CA1 excitability in a chronic model of temporal lobe epilepsy.
    Mangan PS; Bertram EH
    Neuroscience; 1997 Oct; 80(4):1101-11. PubMed ID: 9284063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subiculum network excitability is increased in a rodent model of temporal lobe epilepsy.
    de Guzman P; Inaba Y; Biagini G; Baldelli E; Mollinari C; Merlo D; Avoli M
    Hippocampus; 2006; 16(10):843-60. PubMed ID: 16897722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The entorhinal cortex and generation of seizure activity: studies of normal synaptic transmission and epileptogenesis in vitro.
    Jones RS; Heinemann UF; Lambert JD
    Epilepsy Res Suppl; 1992; 8():173-80. PubMed ID: 1329812
    [No Abstract]   [Full Text] [Related]  

  • 12. The hippocampus participates in a pharmacological rat model of absence seizures.
    Arcaro J; Ma J; Chu L; Kuo M; Mirsattari SM; Stan Leung L
    Epilepsy Res; 2016 Feb; 120():79-90. PubMed ID: 26773250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro.
    Avoli M; D'Antuono M; Louvel J; Köhling R; Biagini G; Pumain R; D'Arcangelo G; Tancredi V
    Prog Neurobiol; 2002 Oct; 68(3):167-207. PubMed ID: 12450487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Medial septal region as a target for modulation of seizure discharges in the hippocampus in a model of acute temporal lobe epilepsy].
    Kichigina VF; Butuzova MV; Sinel'nikova VV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2007; 57(1):52-64. PubMed ID: 17432318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic resistance to kindling associated with alterations in circuit function.
    Kendirli MT; Bertram EH
    Neurobiol Dis; 2017 Sep; 105():213-220. PubMed ID: 28602856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of inhibitory synapses by presynaptic D₄ dopamine receptors in thalamus.
    Govindaiah G; Wang T; Gillette MU; Crandall SR; Cox CL
    J Neurophysiol; 2010 Nov; 104(5):2757-65. PubMed ID: 20884758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prefrontal stimulation of GABAA receptors counteracts the corticolimbic hyperactivity produced by NMDA antagonists in the prefrontal cortex of the rat.
    Del Arco A; Ronzoni G; Mora F
    Psychopharmacology (Berl); 2011 Mar; 214(2):525-36. PubMed ID: 20981411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gating of hippocampal-evoked activity in prefrontal cortical neurons by inputs from the mediodorsal thalamus and ventral tegmental area.
    Floresco SB; Grace AA
    J Neurosci; 2003 May; 23(9):3930-43. PubMed ID: 12736363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seizures beget seizures: the quest for GABA as a key player.
    Ben-Ari Y
    Crit Rev Neurobiol; 2006; 18(1-2):135-44. PubMed ID: 17725516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of kainic acid-induced limbic seizures and Fos expression by the GABA-A receptor agonist muscimol.
    Zhang X; Le Gal La Salle G; Ridoux V; Yu PH; Ju G
    Eur J Neurosci; 1997 Jan; 9(1):29-40. PubMed ID: 9042566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.