These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 21204943)

  • 1. Conversion of mono-polar to peritrichous flagellation in Vibrio alginolyticus.
    Kojima M; Nishioka N; Kusumoto A; Yagasaki J; Fukuda T; Homma M
    Microbiol Immunol; 2011 Feb; 55(2):76-83. PubMed ID: 21204943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus.
    Kusumoto A; Kamisaka K; Yakushi T; Terashima H; Shinohara A; Homma M
    J Biochem; 2006 Jan; 139(1):113-21. PubMed ID: 16428326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus.
    Kusumoto A; Shinohara A; Terashima H; Kojima S; Yakushi T; Homma M
    Microbiology (Reading); 2008 May; 154(Pt 5):1390-1399. PubMed ID: 18451048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of the GTP-binding motif of FlhF which regulates the number and placement of the polar flagellum in Vibrio alginolyticus.
    Kusumoto A; Nishioka N; Kojima S; Homma M
    J Biochem; 2009 Nov; 146(5):643-50. PubMed ID: 19605463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HubP, a Polar Landmark Protein, Regulates Flagellar Number by Assisting in the Proper Polar Localization of FlhG in Vibrio alginolyticus.
    Takekawa N; Kwon S; Nishioka N; Kojima S; Homma M
    J Bacteriol; 2016 Nov; 198(22):3091-3098. PubMed ID: 27573015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and domain characterization of the SflA regulator of flagellar formation in Vibrio alginolyticus.
    Inaba S; Nishigaki T; Takekawa N; Kojima S; Homma M
    Genes Cells; 2017 Jul; 22(7):619-627. PubMed ID: 28544270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel dnaJ family gene, sflA, encodes an inhibitor of flagellation in marine Vibrio species.
    Kitaoka M; Nishigaki T; Ihara K; Nishioka N; Kojima S; Homma M
    J Bacteriol; 2013 Feb; 195(4):816-22. PubMed ID: 23222726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The MinD homolog FlhG regulates the synthesis of the single polar flagellum of Vibrio alginolyticus.
    Ono H; Takashima A; Hirata H; Homma M; Kojima S
    Mol Microbiol; 2015 Oct; 98(1):130-41. PubMed ID: 26112286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of multiple flagella caused by a mutation of the flagellar rotor protein FliM in Vibrio alginolyticus.
    Homma M; Takekawa N; Fujiwara K; Hao Y; Onoue Y; Kojima S
    Genes Cells; 2022 Sep; 27(9):568-578. PubMed ID: 35842835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Polar Flagellar Transcriptional Program Mediated by Diverse Two-Component Signal Transduction Systems and Basal Flagellar Proteins Is Broadly Conserved in Polar Flagellates.
    Burnham PM; Kolar WP; Hendrixson DR
    mBio; 2020 Mar; 11(2):. PubMed ID: 32127455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species.
    Kojima M; Kubo R; Yakushi T; Homma M; Kawagishi I
    Mol Microbiol; 2007 Apr; 64(1):57-67. PubMed ID: 17376072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a luxO-regulated extracellular protein Pep and its roles in motility in Vibrio alginolyticus.
    Cao X; Wang Q; Liu Q; Rui H; Liu H; Zhang Y
    Microb Pathog; 2011 Feb; 50(2):123-31. PubMed ID: 21167274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of the N-terminal region of Vibrio FlhG, a MinD-type ATPase in flagellar number control.
    Homma M; Mizuno A; Hao Y; Kojima S
    J Biochem; 2022 Jul; 172(2):99-107. PubMed ID: 35672947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical analysis of GTPase FlhF which controls the number and position of flagellar formation in marine Vibrio.
    Kondo S; Imura Y; Mizuno A; Homma M; Kojima S
    Sci Rep; 2018 Aug; 8(1):12115. PubMed ID: 30108243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy.
    Correa NE; Peng F; Klose KE
    J Bacteriol; 2005 Sep; 187(18):6324-32. PubMed ID: 16159765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni.
    Gulbronson CJ; Ribardo DA; Balaban M; Knauer C; Bange G; Hendrixson DR
    Mol Microbiol; 2016 Jan; 99(2):291-306. PubMed ID: 26411371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function and Structure of FlaK, a Master Regulator of the Polar Flagellar Genes in Marine
    Homma M; Kobayakawa T; Hao Y; Nishikino T; Kojima S
    J Bacteriol; 2022 Nov; 204(11):e0032022. PubMed ID: 36314831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of LuxS in the regulation of motility and flagella biogenesis in Vibrio alginolyticus.
    Tian Y; Wang Q; Liu Q; Ma Y; Cao X; Guan L; Zhang Y
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):1063-71. PubMed ID: 18391446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations targeting the C-terminal domain of FliG can disrupt motor assembly in the Na(+)-driven flagella of Vibrio alginolyticus.
    Kojima S; Nonoyama N; Takekawa N; Fukuoka H; Homma M
    J Mol Biol; 2011 Nov; 414(1):62-74. PubMed ID: 21986199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the Single Polar Flagellar Biogenesis.
    Kojima S; Terashima H; Homma M
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32244780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.