BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 2120513)

  • 1. Determination of the red blood cell apparent membrane elastic modulus from viscometric measurements.
    Drochon A; Barthes-Biesel D; Lacombe C; Lelievre JC
    J Biomech Eng; 1990 Aug; 112(3):241-9. PubMed ID: 2120513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of red cell membrane viscoelasticity by heat treatment: effect on cell deformability and suspension viscosity.
    Nash GB; Meiselman HJ
    Biorheology; 1985; 22(1):73-84. PubMed ID: 3986320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N; Riha P; Ivanov I; Gluhcheva Y
    Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.
    Chang HY; Li X; Karniadakis GE
    Biophys J; 2017 Jul; 113(2):481-490. PubMed ID: 28746858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flows of red blood cell suspensions through narrow two-dimensional channels.
    Chan T; Jaffrin MY; Seshadri V; Mc Kay C
    Biorheology; 1982; 19(1/2):253-67. PubMed ID: 6807368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular determinants of low-shear blood viscosity.
    Baskurt OK; Meiselman HJ
    Biorheology; 1997; 34(3):235-47. PubMed ID: 9474265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes.
    Pal R
    J Biomech; 2003 Jul; 36(7):981-9. PubMed ID: 12757807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformability and intrinsic material properties of neonatal red blood cells.
    Linderkamp O; Nash GB; Wu PY; Meiselman HJ
    Blood; 1986 May; 67(5):1244-50. PubMed ID: 3697506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The measurement of shear modulus and membrane surface viscosity of RBC membrane with Ektacytometry: a new technique.
    Liu X; Tang ZY; Zeng Z; Chen X; Yao WJ; Yan ZY; Shi Y; Shan HX; Sun DG; He DQ; Wen ZY
    Math Biosci; 2007 Sep; 209(1):190-204. PubMed ID: 17328929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deduction of intrinsic mechanical properties of the erythrocyte membrane from observations of tank-treading in the rheoscope.
    Sutera SP; Pierre PR; Zahalak GI
    Biorheology; 1989; 26(2):177-97. PubMed ID: 2605327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-sectional distributions of normal and abnormal red blood cells in capillary tubes determined by a new technique.
    Sasaki T; Seki J; Itano T; Sugihara-Seki M
    Biorheology; 2018; 54(5-6):153-165. PubMed ID: 29614620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of N-methyl D-aspartate (NMDA) receptors has no influence on rheological properties of erythrocytes.
    Reinhart WH; Geissmann-Ott C; Bogdanova A
    Clin Hemorheol Microcirc; 2011; 49(1-4):307-13. PubMed ID: 22214702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
    Lanotte L; Mauer J; Mendez S; Fedosov DA; Fromental JM; Claveria V; Nicoud F; Gompper G; Abkarian M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13289-13294. PubMed ID: 27834220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of normal human erythrocytes on blood rheology in microcirculation.
    Hirata C; Kobayashi H; Mizuno N; Kutsuna H; Ishina K; Ishii M
    Osaka City Med J; 2007 Dec; 53(2):73-85. PubMed ID: 18432063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of the alterations of membrane shear elastic modulus and viscosity on the deformation and orientation of RBCs].
    Xie L; Yang H; Yao W; Liu D; Zeng Z; Ka W; Sun D; Wen Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):218-22, 226. PubMed ID: 11450538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythrocyte deformation in shear flow: influences of internal viscosity, membrane stiffness, and hematocrit.
    Kon K; Maeda N; Shiga T
    Blood; 1987 Mar; 69(3):727-34. PubMed ID: 2434160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling of biomechanics and biorheology of heated red blood cells.
    Liu ZL; Li H; Qiang Y; Buffet P; Dao M; Karniadakis GE
    Biophys J; 2021 Nov; 120(21):4663-4671. PubMed ID: 34619119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrocyte membrane deformability in patients with thalassemia syndromes.
    Athanasiou G; Zoubos N; Missirlis Y
    Nouv Rev Fr Hematol (1978); 1991; 33(1):15-20. PubMed ID: 1945820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.