BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 2120513)

  • 21. Impact of surface-area-to-volume ratio, internal viscosity and membrane viscoelasticity on red blood cell deformability measured in isotonic condition.
    Renoux C; Faivre M; Bessaa A; Da Costa L; Joly P; Gauthier A; Connes P
    Sci Rep; 2019 May; 9(1):6771. PubMed ID: 31043643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical fragility of erythrocyte membrane in neonates and adults.
    Böhler T; Leo A; Stadler A; Linderkamp O
    Pediatr Res; 1992 Jul; 32(1):92-6. PubMed ID: 1635851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.
    Fedosov DA; Caswell B; Karniadakis GE
    Biophys J; 2010 May; 98(10):2215-25. PubMed ID: 20483330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the Effect of Red Blood Cells Deformability on Blood Flow Conditions in Human Carotid Artery Bifurcation.
    Urevc J; Žun I; Brumen M; Štok B
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27814428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields.
    Engelhardt H; Sackmann E
    Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The elastic yield stress of human blood.
    Thurston GB
    Biomed Sci Instrum; 1993; 29():87-93. PubMed ID: 8329640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity.
    Lázaro GR; Hernández-Machado A; Pagonabarraga I
    Soft Matter; 2014 Oct; 10(37):7195-206. PubMed ID: 25105872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging.
    Pfafferott C; Nash GB; Meiselman HJ
    Biophys J; 1985 May; 47(5):695-704. PubMed ID: 4016189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Erythrocyte aggregation: the roles of cell deformability and geometry.
    Reinhart WH; Singh A
    Eur J Clin Invest; 1990 Aug; 20(4):458-62. PubMed ID: 2121506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of osmolality on erythrocyte rheology and perfusion of an artificial microvascular network.
    Reinhart WH; Piety NZ; Goede JS; Shevkoplyas SS
    Microvasc Res; 2015 Mar; 98():102-7. PubMed ID: 25660474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extensional recovery of an intact erythrocyte from a tank-treading motion.
    Sutera SP; Mueller ER; Zahalak GI
    J Biomech Eng; 1990 Aug; 112(3):250-6. PubMed ID: 2214705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Filterability and other methods of approaching red cell deformability. Determinants of blood viscosity and red cell deformability.
    Chien S
    Scand J Clin Lab Invest Suppl; 1981; 156():7-12. PubMed ID: 6948403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood rheology during normal pregnancy.
    Tsikouras P; Niesigk B; von Tempelhoff GF; Rath W; Schelkunov O; Daragó P; Csorba R
    Clin Hemorheol Microcirc; 2018; 69(1-2):101-114. PubMed ID: 29758932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.
    Fedosov DA; Caswell B; Karniadakis GE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4266-9. PubMed ID: 19965026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects.
    Gross M; Krüger T; Varnik F
    Soft Matter; 2014 Jun; 10(24):4360-72. PubMed ID: 24796957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic viscoelasticity of blood cell suspensions: effects of erythrocyte deformability.
    More RB; Thurston GB
    Biorheology; 1987; 24(3):297-309. PubMed ID: 3663891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.