These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
592 related articles for article (PubMed ID: 21205189)
1. C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. Byrt CS; Grof CP; Furbank RT J Integr Plant Biol; 2011 Feb; 53(2):120-35. PubMed ID: 21205189 [TBL] [Abstract][Full Text] [Related]
2. Feedstocks for lignocellulosic biofuels. Somerville C; Youngs H; Taylor C; Davis SC; Long SP Science; 2010 Aug; 329(5993):790-2. PubMed ID: 20705851 [TBL] [Abstract][Full Text] [Related]
3. Bioethanol from lignocellulosics: Status and perspectives in Canada. Mabee WE; Saddler JN Bioresour Technol; 2010 Jul; 101(13):4806-13. PubMed ID: 20006494 [TBL] [Abstract][Full Text] [Related]
4. RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Jung JH; Fouad WM; Vermerris W; Gallo M; Altpeter F Plant Biotechnol J; 2012 Dec; 10(9):1067-76. PubMed ID: 22924974 [TBL] [Abstract][Full Text] [Related]
5. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Waclawovsky AJ; Sato PM; Lembke CG; Moore PH; Souza GM Plant Biotechnol J; 2010 Apr; 8(3):263-76. PubMed ID: 20388126 [TBL] [Abstract][Full Text] [Related]
6. Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Ge X; Burner DM; Xu J; Phillips GC; Sivakumar G Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455 [TBL] [Abstract][Full Text] [Related]
7. The potential impacts of biomass feedstock production on water resource availability. Stone KC; Hunt PG; Cantrell KB; Ro KS Bioresour Technol; 2010 Mar; 101(6):2014-25. PubMed ID: 19939667 [TBL] [Abstract][Full Text] [Related]
8. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Weng JK; Li X; Bonawitz ND; Chapple C Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196 [TBL] [Abstract][Full Text] [Related]
9. Genetic engineering approaches to improve bioethanol production from maize. Torney F; Moeller L; Scarpa A; Wang K Curr Opin Biotechnol; 2007 Jun; 18(3):193-9. PubMed ID: 17399975 [TBL] [Abstract][Full Text] [Related]
10. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'. Chandel AK; Singh OV Appl Microbiol Biotechnol; 2011 Mar; 89(5):1289-303. PubMed ID: 21181146 [TBL] [Abstract][Full Text] [Related]
11. Genetic engineering of energy crops: a strategy for biofuel production in China. Xie G; Peng L J Integr Plant Biol; 2011 Feb; 53(2):143-50. PubMed ID: 21205188 [TBL] [Abstract][Full Text] [Related]
12. An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Swana J; Yang Y; Behnam M; Thompson R Bioresour Technol; 2011 Jan; 102(2):2112-7. PubMed ID: 20843683 [TBL] [Abstract][Full Text] [Related]
13. Extremophiles in biofuel synthesis. Barnard D; Casanueva A; Tuffin M; Cowan D Environ Technol; 2010; 31(8-9):871-88. PubMed ID: 20662378 [TBL] [Abstract][Full Text] [Related]
14. Engineering grass biomass for sustainable and enhanced bioethanol production. Mohapatra S; Mishra SS; Bhalla P; Thatoi H Planta; 2019 Aug; 250(2):395-412. PubMed ID: 31236698 [TBL] [Abstract][Full Text] [Related]
15. Genetic improvement of plants for enhanced bio-ethanol production. Saha S; Ramachandran S Recent Pat DNA Gene Seq; 2013 Apr; 7(1):36-44. PubMed ID: 22779439 [TBL] [Abstract][Full Text] [Related]
16. Scientific challenges of bioethanol production in Brazil. Amorim HV; Lopes ML; de Castro Oliveira JV; Buckeridge MS; Goldman GH Appl Microbiol Biotechnol; 2011 Sep; 91(5):1267-75. PubMed ID: 21735264 [TBL] [Abstract][Full Text] [Related]
17. Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture. Gallagher ME; Hockaday WC; Masiello CA; Snapp S; McSwiney CP; Baldock JA Environ Sci Technol; 2011 Mar; 45(5):2013-20. PubMed ID: 21348531 [TBL] [Abstract][Full Text] [Related]
18. Bioethanol from lignocellulosic biomass. Zhao XQ; Zi LH; Bai FW; Lin HL; Hao XM; Yue GJ; Ho NW Adv Biochem Eng Biotechnol; 2012; 128():25-51. PubMed ID: 22138971 [TBL] [Abstract][Full Text] [Related]
19. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks. Trumbo JL; Zhang B; Stewart CN Plant Biotechnol J; 2015 Apr; 13(3):337-54. PubMed ID: 25707745 [TBL] [Abstract][Full Text] [Related]
20. Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Poovaiah CR; Nageswara-Rao M; Soneji JR; Baxter HL; Stewart CN Plant Biotechnol J; 2014 Dec; 12(9):1163-73. PubMed ID: 25051990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]