These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 2120550)
1. Effect of disulphite on protein and pyridine-2,6-dicarboxylic acid synthesis in sporulating cells of bacterial species. Oloyede OB; Abalaka JA Microbios; 1990; 63(254):37-44. PubMed ID: 2120550 [TBL] [Abstract][Full Text] [Related]
2. Sporulation of bacterial species in the presence of metabisulphite. Oloyede OB; Abalaka JA Microbios; 1989; 57(230):49-63. PubMed ID: 2500579 [TBL] [Abstract][Full Text] [Related]
3. Effect of metabisulphite on sporulation and alkaline phosphatase in Bacillus subtilis and Bacillus cereus. Abalaka JA; Oloyede OB Microbios; 1990; 63(256-257):173-86. PubMed ID: 2122190 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of Ca2+ and dipicolinic acid requirement for L-alanine induced germination of Bacillus cereus BIS-59 spores. Kamat AS; Lewis NF; Pradhan DS Microbios; 1985; 44(177):33-44. PubMed ID: 3938515 [TBL] [Abstract][Full Text] [Related]
5. Studies of the release of small molecules during pressure germination of spores of Bacillus subtilis. Vepachedu VR; Hirneisen K; Hoover DG; Setlow P Lett Appl Microbiol; 2007 Sep; 45(3):342-8. PubMed ID: 17718850 [TBL] [Abstract][Full Text] [Related]
6. Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure. Black EP; Wei J; Atluri S; Cortezzo DE; Koziol-Dube K; Hoover DG; Setlow P J Appl Microbiol; 2007 Jan; 102(1):65-76. PubMed ID: 17184321 [TBL] [Abstract][Full Text] [Related]
7. EtfA catalyses the formation of dipicolinic acid in Clostridium perfringens. Orsburn BC; Melville SB; Popham DL Mol Microbiol; 2010 Jan; 75(1):178-86. PubMed ID: 19968785 [TBL] [Abstract][Full Text] [Related]
8. Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method. Huang X; Lu Z; Bie X; Lü F; Zhao H; Yang S Appl Microbiol Biotechnol; 2007 Feb; 74(2):454-61. PubMed ID: 17043814 [TBL] [Abstract][Full Text] [Related]
9. A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. Balassa G; Milhaud P; Raulet E; Silva MT; Sousa JC J Gen Microbiol; 1979 Feb; 110(2):365-79. PubMed ID: 108357 [TBL] [Abstract][Full Text] [Related]
10. Fourier transform infrared reflectance microspectroscopy study of Bacillus subtilis engineered without dipicolinic acid: the contribution of calcium dipicolinate to the mid-infrared absorbance of Bacillus subtilis endospores. Perkins DL; Lovell CR; Bronk BV; Setlow B; Setlow P; Myrick ML Appl Spectrosc; 2005 Jul; 59(7):893-6. PubMed ID: 16053560 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of Bacillus subtilis spore killing by and resistance to an acidic Fe-EDTA-iodide-ethanol formulation. Shapiro MP; Setlow P J Appl Microbiol; 2006 Apr; 100(4):746-53. PubMed ID: 16553729 [TBL] [Abstract][Full Text] [Related]
12. Induction of accelerated sporangial lysis by basic peptide antibiotics. A novel method of preparation of free spores of bacilli. Vinter V; Stastná J J Appl Bacteriol; 1980 Aug; 49(1):155-64. PubMed ID: 6253430 [No Abstract] [Full Text] [Related]
13. Effect of microwave radiation on Bacillus subtilis spores. Celandroni F; Longo I; Tosoratti N; Giannessi F; Ghelardi E; Salvetti S; Baggiani A; Senesi S J Appl Microbiol; 2004; 97(6):1220-7. PubMed ID: 15546413 [TBL] [Abstract][Full Text] [Related]
14. [Structural and biochemical changes in the spores of Bacillus cereus exposed to caustic soda and hypochlorite]. Kulikovskiĭ AV Mikrobiologiia; 1976; 45(1):128-32. PubMed ID: 820941 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the germination of spores of Bacillus subtilis with temperature sensitive spo mutations in the spoVA operon. Vepachedu VR; Setlow P FEMS Microbiol Lett; 2004 Oct; 239(1):71-7. PubMed ID: 15451103 [TBL] [Abstract][Full Text] [Related]
16. Effects of porcine bile on survival of Bacillus cereus vegetative cells and Haemolysin BL enterotoxin production in reconstituted human small intestine media. Clavel T; Carlin F; Dargaignaratz C; Lairon D; Nguyen-The C; Schmitt P J Appl Microbiol; 2007 Nov; 103(5):1568-75. PubMed ID: 17953568 [TBL] [Abstract][Full Text] [Related]
17. Growth inhibition and induction of stress protein, GroEL, of Bacillus cereus exposed to antibacterial peptide isolated from Bacillus subtilis SC-8. Lee NK; Yeo IC; Park JW; Hahm YT Appl Biochem Biotechnol; 2011 Sep; 165(1):235-42. PubMed ID: 21544555 [TBL] [Abstract][Full Text] [Related]
18. The possible involvement of trypsin-like enzymes in germination of spores of Bacillus cereus T and Bacillus subtilis 168. Boschwitz H; Gofshtein-Gandman L; Halvorson HO; Keynan A; Milner Y J Gen Microbiol; 1991 May; 137(5):1145-53. PubMed ID: 1650815 [TBL] [Abstract][Full Text] [Related]
19. Effect of N-beta-phenyl ethyl anthranilic acid on macromolecular synthesis during outgrowth of Bacillus subtilis hcr-9 spores. Sreenath TL; Polasa H Microbios; 1985; 44(181S):281-3. PubMed ID: 2422531 [TBL] [Abstract][Full Text] [Related]