These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2120550)

  • 21. Role of a SpoVA protein in dipicolinic acid uptake into developing spores of Bacillus subtilis.
    Li Y; Davis A; Korza G; Zhang P; Li YQ; Setlow B; Setlow P; Hao B
    J Bacteriol; 2012 Apr; 194(8):1875-84. PubMed ID: 22328679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Release of dipicolinic acid (DPA) from spores of Bacillus megaterium, B. stearothermophilus and B. anthracis in presence of bile acids.
    Gupta KG; Malik M; Bhalla VK
    Zentralbl Bakteriol Orig A; 1974 Feb; 226(1):114-8. PubMed ID: 4152347
    [No Abstract]   [Full Text] [Related]  

  • 23. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis.
    Ramírez-Guadiana FH; Meeske AJ; Rodrigues CDA; Barajas-Ornelas RDC; Kruse AC; Rudner DZ
    PLoS Genet; 2017 Sep; 13(9):e1007015. PubMed ID: 28945739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interspecies interaction of signal peptide PapR secreted by Bacillus cereus and its effect on production of antimicrobial peptide.
    Yeo IC; Lee NK; Cha CJ; Hahm YT
    Appl Biochem Biotechnol; 2012 Feb; 166(3):700-10. PubMed ID: 22101448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Release of the dipicolinic acid (DPA) from spores of Bacillus stearothermophilus, B. megaterium and B. anthracis in presence of dyes.
    Gupta KG; Malik M; Bhalla VK
    Zentralbl Bakteriol Orig A; 1974 Feb; 226(2):272-7. PubMed ID: 4151214
    [No Abstract]   [Full Text] [Related]  

  • 26. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis.
    Ulvatne H; Samuelsen Ø; Haukland HH; Krämer M; Vorland LH
    FEMS Microbiol Lett; 2004 Aug; 237(2):377-84. PubMed ID: 15321686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms.
    Simões M; Simoes LC; Pereira MO; Vieira MJ
    Biofouling; 2008; 24(5):339-49. PubMed ID: 18576180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of calcium and dipicolinic acid in the resistance of Bacillus cereus BIS-59 spores to u.v. and gamma radiations.
    Kamat AS; Pradhan DS
    Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Jan; 51(1):7-18. PubMed ID: 3100469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased dipicolinic acid production with an enhanced spoVF operon in Bacillus subtilis and medium optimization.
    Takahashi F; Sumitomo N; Hagihara H; Ozaki K
    Biosci Biotechnol Biochem; 2015; 79(3):505-11. PubMed ID: 25402593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis.
    Toya Y; Hirasawa T; Ishikawa S; Chumsakul O; Morimoto T; Liu S; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    Biosci Biotechnol Biochem; 2015; 79(12):2073-80. PubMed ID: 26120821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophoretic studies on bacteria. 2. The effect of enzymes on resting spores of Bacillus megaterium, B. subtilis and B. cereus.
    DOUGLAS HW; PARKER F
    Biochem J; 1958 Jan; 68(1):94-9. PubMed ID: 13522581
    [No Abstract]   [Full Text] [Related]  

  • 32. Photoprotection by dipicolinate against inactivation of bacterial spores with ultraviolet light.
    Grecz N; Tang T; Frank HA
    J Bacteriol; 1973 Feb; 113(2):1058-60. PubMed ID: 4632312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating novel synthetic compounds active against Bacillus subtilis and Bacillus cereus spores using Live imaging with SporeTrackerX.
    Omardien S; Ter Beek A; Vischer N; Montijn R; Schuren F; Brul S
    Sci Rep; 2018 Jun; 8(1):9128. PubMed ID: 29904100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of ultraviolet radiation to locate dipicolinic acid in Bacillus cereus spores.
    Germaine GR; Murrell WG
    J Bacteriol; 1974 Apr; 118(1):202-8. PubMed ID: 4206870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence that dipicolinic acid is covalently bound to specific macromolecules in spores of Bacillus subtilis.
    Matano Y; Yasuda Y; Tochikubo K
    FEMS Microbiol Lett; 1993 May; 109(2-3):189-94. PubMed ID: 8339911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyridine-2, 6-dicarboxylic acid (dipicolinic acid) formation in Bacillus subtilis. II Non-enzymatic and enzymatic formations of dipicolinic acid from alpha, epsilon-diketopimelic acid and ammonia.
    Kimura K; Sasakawa T
    J Biochem; 1975 Aug; 78(2):381-90. PubMed ID: 6441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial metabolites from intra- and inter-species influencing thermotolerance: the case of Bacillus cereus and Geobacillus stearothermophilus.
    Gómez-Govea MA; García S; Heredia N
    Folia Microbiol (Praha); 2017 May; 62(3):183-189. PubMed ID: 27896600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of bacterial spore structure by high resolution solid-state nuclear magnetic resonance spectroscopy and transmission electron microscopy.
    Leuschner RG; Lillford PJ
    Int J Food Microbiol; 2001 Jan; 63(1-2):35-50. PubMed ID: 11205952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alkaline phosphatase production during sporulation of Bacillus cereus.
    Bursík M; Nĕmec M
    Folia Microbiol (Praha); 1999; 44(1):90-2. PubMed ID: 10489697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of sporulation by DNA gyrase inhibitors.
    Vazquez-Ramos JM; Mandelstam J
    J Gen Microbiol; 1981 Nov; 127(1):11-7. PubMed ID: 6279764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.