These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. New 3-D microarray platform based on macroporous polymer monoliths. Rober M; Walter J; Vlakh E; Stahl F; Kasper C; Tennikova T Anal Chim Acta; 2009 Jun; 644(1-2):95-103. PubMed ID: 19463569 [TBL] [Abstract][Full Text] [Related]
3. CEC with new monolithic stationary phase based on a fluorinated monomer, trifluoroethyl methacrylate. Yurtsever A; Saraçoğlu B; Tuncel A Electrophoresis; 2009 Feb; 30(4):589-98. PubMed ID: 19156765 [TBL] [Abstract][Full Text] [Related]
4. Monolithic column based on a poly(glycidyl methacrylate-co-4-vinylphenylboronic acid-co-ethylene dimethacrylate) copolymer for capillary liquid chromatography of small molecules and proteins. Lin Z; Huang H; Sun X; Lin Y; Zhang L; Chen G J Chromatogr A; 2012 Jul; 1246():90-7. PubMed ID: 22425210 [TBL] [Abstract][Full Text] [Related]
5. Preparation and evaluation of hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary for in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Wen Y; Feng YQ J Chromatogr A; 2007 Aug; 1160(1-2):90-8. PubMed ID: 17559862 [TBL] [Abstract][Full Text] [Related]
6. Performance of R-N(R')-R'' functionalised poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) monolithic sorbent for plasmid DNA adsorption. Danquah MK; Ho J; Forde GM J Sep Sci; 2007 Nov; 30(17):2843-50. PubMed ID: 17960843 [TBL] [Abstract][Full Text] [Related]
7. Effect of monomer mixture composition on structure and chromatographic properties of poly(divinylbenzene-co-ethylvinylbenzene-co-2-hydroxyethyl methacrylate) monolithic rod columns for separation of small molecules. Smirnov KN; Dyatchkov IA; Telnov MV; Pirogov AV; Shpigun OA J Chromatogr A; 2011 Jul; 1218(30):5010-9. PubMed ID: 21194698 [TBL] [Abstract][Full Text] [Related]
8. On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths. Nischang I; Brüggemann O J Chromatogr A; 2010 Aug; 1217(33):5389-97. PubMed ID: 20598699 [TBL] [Abstract][Full Text] [Related]
9. Macroporous monolithic chiral stationary phases for capillary electrochromatography: New chiral monomer derived from cinchona alkaloid with enhanced enantioselectivity. Lämmerhofer M; Tobler E; Zarbl E; Lindner W; Svec F; Fréchet JM Electrophoresis; 2003 Sep; 24(17):2986-99. PubMed ID: 12973802 [TBL] [Abstract][Full Text] [Related]
10. One-pot preparation of a sulfamethoxazole functionalized affinity monolithic column for selective isolation and purification of trypsin. Xiao Y; Guo J; Ran D; Duan Q; Crommen J; Jiang Z J Chromatogr A; 2015 Jun; 1400():47-53. PubMed ID: 25980695 [TBL] [Abstract][Full Text] [Related]
11. Multidimensional system enabling deglycosylation of proteins using a capillary reactor with peptide-N-glycosidase F immobilized on a porous polymer monolith and hydrophilic interaction liquid chromatography-mass spectrometry of glycans. Krenkova J; Lacher NA; Svec F J Chromatogr A; 2009 Apr; 1216(15):3252-9. PubMed ID: 19268959 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. Yang S; Ye F; Lv Q; Zhang C; Shen S; Zhao S J Chromatogr A; 2014 Sep; 1360():143-9. PubMed ID: 25145567 [TBL] [Abstract][Full Text] [Related]
13. The suitability of DEAE-Cl active groups on customized poly(GMA-co-EDMA) continuous stationary phase for fast enzyme-free isolation of plasmid DNA. Danquah MK; Forde GM J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun; 853(1-2):38-46. PubMed ID: 17400523 [TBL] [Abstract][Full Text] [Related]
14. Preparation, characterization and application of polymethacrylate-based monolithic columns for fast and efficient separation of alkanes, alcohols, alkylbenzenes and isomeric mixtures by gas chromatography. Obbed MS; Aqel A; Al Othman ZA; Badjah-Hadj-Ahmed AY J Chromatogr A; 2018 Jun; 1555():89-99. PubMed ID: 29724647 [TBL] [Abstract][Full Text] [Related]
15. Electrochromatographic characterization of methacrylate-based monolith with mixed mode of hydrophilic and weak electrostatic interactions by pressurized capillary electrochromatography. Wang X; Lü H; Lin X; Xie Z J Chromatogr A; 2008 May; 1190(1-2):365-71. PubMed ID: 18359032 [TBL] [Abstract][Full Text] [Related]
16. Preparation of monomeric and polymeric β-cyclodextrin functionalized monoliths for rapid isolation and purification of puerarin from Radix puerariae. Lv Y; Hughes TC; Hao X; Mei D; Tan T J Sep Sci; 2011 Aug; 34(16-17):2131-7. PubMed ID: 21766485 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for mu-HPLC and capillary electrochromatography. Li Y; Chen Y; Xiang R; Ciuparu D; Pfefferle LD; Horváth C; Wilkins JA Anal Chem; 2005 Mar; 77(5):1398-406. PubMed ID: 15732924 [TBL] [Abstract][Full Text] [Related]
18. Neutral polar methacrylate-based monoliths for normal phase nano-LC and CEC of polar species including N-glycans. Zhong H; El Rassi Z J Sep Sci; 2009 Jan; 32(1):10-20. PubMed ID: 19058161 [TBL] [Abstract][Full Text] [Related]
19. Preparation of porous polymer monolithic column using functionalized graphene oxide as a functional crosslinker for high performance liquid chromatography separation of small molecules. Li Y; Qi L; Ma H Analyst; 2013 Sep; 138(18):5470-8. PubMed ID: 23884304 [TBL] [Abstract][Full Text] [Related]
20. Preparation of low flow-resistant methacrylate-based monolithic stationary phases of different hydrophobicity and the application to rapid reversed-phase liquid chromatographic separation of alkylbenzenes at high flow rate and elevated temperature. Ueki Y; Umemura T; Iwashita Y; Odake T; Haraguchi H; Tsunoda K J Chromatogr A; 2006 Feb; 1106(1-2):106-11. PubMed ID: 16443455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]