These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 21205603)

  • 21. Head-to-head comparison of coronary plaque evaluation between multislice computed tomography and intravascular ultrasound radiofrequency data analysis.
    Pundziute G; Schuijf JD; Jukema JW; Decramer I; Sarno G; Vanhoenacker PK; Reiber JH; Schalij MJ; Wijns W; Bax JJ
    JACC Cardiovasc Interv; 2008 Apr; 1(2):176-82. PubMed ID: 19463297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment with multi-slice computed tomography and gray-scale and virtual histology intravascular ultrasound of gender-specific differences in extent and composition of coronary atherosclerotic plaques in relation to age.
    Pundziute G; Schuijf JD; van Velzen JE; Jukema JW; van Werkhoven JM; Nucifora G; van der Kley F; Kroft LJ; de Roos A; Boersma E; Reiber JH; Schalij MJ; van der Wall EE; Bax JJ
    Am J Cardiol; 2010 Feb; 105(4):480-6. PubMed ID: 20152242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques.
    Räber L; Heo JH; Radu MD; Garcia-Garcia HM; Stefanini GG; Moschovitis A; Dijkstra J; Kelbaek H; Windecker S; Serruys PW
    EuroIntervention; 2012 May; 8(1):98-108. PubMed ID: 22580254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discrepancy between frequency domain optical coherence tomography and intravascular ultrasound in human coronary arteries and in a phantom in vitro coronary model.
    Kim IC; Nam CW; Cho YK; Park HS; Yoon HJ; Kim H; Chung IS; Han S; Hur SH; Kim YN; Kim KB
    Int J Cardiol; 2016 Oct; 221():860-6. PubMed ID: 27434362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis.
    Li BH; Leung AS; Soong A; Munding CE; Lee H; Thind AS; Munce NR; Wright GA; Rowsell CH; Yang VX; Strauss BH; Foster FS; Courtney BK
    Catheter Cardiovasc Interv; 2013 Feb; 81(3):494-507. PubMed ID: 22566368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of coronary intima--media thickness by optical coherence tomography: comparison with intravascular ultrasound.
    Kume T; Akasaka T; Kawamoto T; Watanabe N; Toyota E; Neishi Y; Sukmawan R; Sadahira Y; Yoshida K
    Circ J; 2005 Aug; 69(8):903-7. PubMed ID: 16041157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. iMap-Intravascular Ultrasound Radiofrequency Signal Analysis Reflects Plaque Components of Optical Coherence Tomography-Derived Thin-Cap Fibroatheroma.
    Koga S; Ikeda S; Miura M; Yoshida T; Nakata T; Koide Y; Kawano H; Maemura K
    Circ J; 2015; 79(10):2231-7. PubMed ID: 26289833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The predictive value of computed tomography calcium scores: a comparison with quantitative volumetric intravascular ultrasound.
    Okabe T; Mintz GS; Weigold WG; Roswell R; Joshi S; Lee SY; Lee B; Steinberg DH; Roy P; Slottow TL; Kaneshige K; Torguson R; Xue Z; Satler LF; Kent KM; Pichard AD; Weissman NJ; Lindsay J; Waksman R
    Cardiovasc Revasc Med; 2009; 10(1):30-5. PubMed ID: 19159852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma.
    Sawada T; Shite J; Garcia-Garcia HM; Shinke T; Watanabe S; Otake H; Matsumoto D; Tanino Y; Ogasawara D; Kawamori H; Kato H; Miyoshi N; Yokoyama M; Serruys PW; Hirata K
    Eur Heart J; 2008 May; 29(9):1136-46. PubMed ID: 18397871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prospective evaluation of optical coherence tomography in lower limb arteries compared with intravascular ultrasound.
    Eberhardt KM; Treitl M; Boesenecker K; Maxien D; Reiser M; Rieger J
    J Vasc Interv Radiol; 2013 Oct; 24(10):1499-508. PubMed ID: 23962439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro analysis of coronary atheromatous lesions by intravascular ultrasound; reproducibility and histological correlation of lesion morphology.
    Palmer ND; Northridge D; Lessells A; McDicken WN; Fox KA
    Eur Heart J; 1999 Dec; 20(23):1701-6. PubMed ID: 10562477
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Combined use of optical coherence tomography and intravascular ultrasound during percutaneous coronary intervention in patients with coronary artery disease].
    Hou JB; Meng LB; Jing SH; Han ZG; Yu H; Yu B
    Zhonghua Xin Xue Guan Bing Za Zhi; 2008 Nov; 36(11):980-4. PubMed ID: 19102909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preliminary study of the significance of reverberation by IVUS detection for patients with severe calcified lesions.
    You W; Zhang HL; Xu T; Meng PN; Zhou YH; Wu XQ; Wu ZM; Tao B; Guo YJ; Nong JC; Ye F
    Int J Cardiovasc Imaging; 2023 Mar; 39(3):667-676. PubMed ID: 36609638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography.
    Gonzalo N; Garcia-Garcia HM; Regar E; Barlis P; Wentzel J; Onuma Y; Ligthart J; Serruys PW
    JACC Cardiovasc Imaging; 2009 Apr; 2(4):473-82. PubMed ID: 19580731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue characterization of coronary plaques and assessment of thickness of fibrous cap using integrated backscatter intravascular ultrasound. Comparison with histology and optical coherence tomography.
    Kawasaki M; Hattori A; Ishihara Y; Okubo M; Nishigaki K; Takemura G; Saio M; Takami T; Minatoguchi S
    Circ J; 2010 Nov; 74(12):2641-8. PubMed ID: 20953061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ability of optical coherence tomography to monitor percutaneous coronary intervention: detailed comparison with intravascular ultrasound.
    Kawamori H; Shite J; Shinke T; Otake H; Sawada T; Kato H; Miyoshi N; Yoshino N; Kozuki A; Hariki H; Inoue T; Hirata K
    J Invasive Cardiol; 2010 Nov; 22(11):541-5. PubMed ID: 21041851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility of optical coronary tomography in quantitative measurement of coronary arteries with lipid-rich plaque.
    Kubo T; Yamano T; Liu Y; Ino Y; Shiono Y; Orii M; Taruya A; Nishiguchi T; Shimokado A; Teraguchi I; Tanimoto T; Kitabata H; Yamaguchi T; Hirata K; Tanaka A; Akasaka T
    Circ J; 2015; 79(3):600-6. PubMed ID: 25492038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Intravascular optical coherence tomography: differentiation of atherosclerotic plaques and quantification of vessel dimensions in crural arterial specimens].
    Meissner OA; Rieber J; Babaryka G; Oswald M; Reim S; Siebert U; Redel T; Eibel R; Mueller-Lisse U; Reiser M; Mueller-Lisse UG
    Rofo; 2006 Feb; 178(2):214-20. PubMed ID: 16435253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound.
    Sun J; Zhang Z; Lu B; Yu W; Yang Y; Zhou Y; Wang Y; Fan Z
    AJR Am J Roentgenol; 2008 Mar; 190(3):748-54. PubMed ID: 18287448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Morphological characteristics of ostial and non-ostial left main coronary artery lesion without heavy calcification determined by intravascular ultrasound imaging].
    Liu XB; Qian JY; Ge L; Zhang F; Fan B; Wang QB; Lu Y; Ge JB
    Zhonghua Xin Xue Guan Bing Za Zhi; 2008 Nov; 36(11):975-9. PubMed ID: 19102908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.