BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21205852)

  • 21. Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues.
    Aviel-Ronen S; Qi Zhu C; Coe BP; Liu N; Watson SK; Lam WL; Tsao MS
    BMC Genomics; 2006 Dec; 7():312. PubMed ID: 17156491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The utility of whole genome amplification for typing compromised forensic samples.
    Barber AL; Foran DR
    J Forensic Sci; 2006 Nov; 51(6):1344-9. PubMed ID: 17199620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Processive proofreading and the spatial relationship between polymerase and exonuclease active sites of bacteriophage phi29 DNA polymerase.
    de Vega M; Blanco L; Salas M
    J Mol Biol; 1999 Sep; 292(1):39-51. PubMed ID: 10493855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro evolution of phi29 DNA polymerases through compartmentalized gene expression and rolling-circle replication.
    Sakatani Y; Mizuuchi R; Ichihashi N
    Protein Eng Des Sel; 2019 Dec; 32(11):481-487. PubMed ID: 32533140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole Genome Methylation Scanning Based on phi29 Polymerase Amplification.
    Brooks R; Rose RJ; Sheahan MB; Kurdyukov S
    Biochemistry (Mosc); 2011 Sep; 76(9):999-1002. PubMed ID: 22082267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple displacement amplification as a pre-polymerase chain reaction (pre-PCR) to process difficult to amplify samples and low copy number sequences from natural environments.
    Gonzalez JM; Portillo MC; Saiz-Jimenez C
    Environ Microbiol; 2005 Jul; 7(7):1024-8. PubMed ID: 15946299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phi29 polymerase based random amplification of viral RNA as an alternative to random RT-PCR.
    Berthet N; Reinhardt AK; Leclercq I; van Ooyen S; Batéjat C; Dickinson P; Stamboliyska R; Old IG; Kong KA; Dacheux L; Bourhy H; Kennedy GC; Korfhage C; Cole ST; Manuguerra JC
    BMC Mol Biol; 2008 Sep; 9():77. PubMed ID: 18771595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell-free cloning using phi29 DNA polymerase.
    Hutchison CA; Smith HO; Pfannkoch C; Venter JC
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17332-6. PubMed ID: 16286637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Whole-genome multiple displacement amplification from single cells.
    Spits C; Le Caignec C; De Rycke M; Van Haute L; Van Steirteghem A; Liebaers I; Sermon K
    Nat Protoc; 2006; 1(4):1965-70. PubMed ID: 17487184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple displacement amplification to create a long-lasting source of DNA for genetic studies.
    Lovmar L; Syvänen AC
    Hum Mutat; 2006 Jul; 27(7):603-14. PubMed ID: 16786504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Successful application of FTA Classic Card technology and use of bacteriophage phi29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes.
    Owor BE; Shepherd DN; Taylor NJ; Edema R; Monjane AL; Thomson JA; Martin DP; Varsani A
    J Virol Methods; 2007 Mar; 140(1-2):100-5. PubMed ID: 17174409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The bacteriophage phi29 DNA polymerase.
    Salas M; Blanco L; Lázaro JM; de Vega M
    IUBMB Life; 2008 Jan; 60(1):82-5. PubMed ID: 18379997
    [No Abstract]   [Full Text] [Related]  

  • 33. Isothermal DNA amplification in bioanalysis: strategies and applications.
    Kim J; Easley CJ
    Bioanalysis; 2011 Jan; 3(2):227-39. PubMed ID: 21250850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Random-primed, Phi29 DNA polymerase-based whole genome amplification.
    Nelson JR
    Curr Protoc Mol Biol; 2014 Jan; 105():Unit 15.13.. PubMed ID: 24510438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Massively parallel display of genomic DNA fragments by rolling-circle amplification and strand displacement amplification on chip.
    Zhao H; Gao L; Luo J; Zhou D; Lu Z
    Talanta; 2010 Jul; 82(2):477-82. PubMed ID: 20602923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs.
    de Vega M; Lázaro JM; Mencía M; Blanco L; Salas M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16506-11. PubMed ID: 20823261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of phi29-based whole genome amplification and whole transcriptome amplification in dengue virus.
    Sujayanont P; Chininmanu K; Tassaneetrithep B; Tangthawornchaikul N; Malasit P; Suriyaphol P
    J Virol Methods; 2014 Jan; 195():141-7. PubMed ID: 24129073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional characterization of highly processive protein-primed DNA polymerases from phages Nf and GA-1, endowed with a potent strand displacement capacity.
    Longás E; de Vega M; Lázaro JM; Salas M
    Nucleic Acids Res; 2006; 34(20):6051-63. PubMed ID: 17071961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvements of rolling circle amplification (RCA) efficiency and accuracy using Thermus thermophilus SSB mutant protein.
    Inoue J; Shigemori Y; Mikawa T
    Nucleic Acids Res; 2006 May; 34(9):e69. PubMed ID: 16707659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal DNA templates for rolling circle amplification revealed by in vitro selection.
    Mao Y; Liu M; Tram K; Gu J; Salena BJ; Jiang Y; Li Y
    Chemistry; 2015 May; 21(22):8069-74. PubMed ID: 25877998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.