These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 21205867)

  • 1. Initial transcribed region sequences influence the composition and functional properties of the bacterial elongation complex.
    Deighan P; Pukhrambam C; Nickels BE; Hochschild A
    Genes Dev; 2011 Jan; 25(1):77-88. PubMed ID: 21205867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-mediated destabilization of the sigma(70) region 4/beta flap interaction facilitates engagement of RNA polymerase by the Q antiterminator.
    Nickels BE; Roberts CW; Roberts JW; Hochschild A
    Mol Cell; 2006 Nov; 24(3):457-68. PubMed ID: 17081994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. σ38-dependent promoter-proximal pausing by bacterial RNA polymerase.
    Petushkov I; Esyunina D; Kulbachinskiy A
    Nucleic Acids Res; 2017 Apr; 45(6):3006-3016. PubMed ID: 27928053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial RNA polymerase can retain σ70 throughout transcription.
    Harden TT; Wells CD; Friedman LJ; Landick R; Hochschild A; Kondev J; Gelles J
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):602-7. PubMed ID: 26733675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation.
    Nickels BE; Garrity SJ; Mekler V; Minakhin L; Severinov K; Ebright RH; Hochschild A
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4488-93. PubMed ID: 15761057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of σ-dependent pausing by RNA polymerases from Escherichia coli and Thermus aquaticus.
    Zhilina EV; Miropolskaya NA; Bass IA; Brodolin KL; Kulbachinskiy AV
    Biochemistry (Mosc); 2011 Oct; 76(10):1098-106. PubMed ID: 22098235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sigma-core interaction of the RNA polymerase holoenzyme that enhances promoter escape.
    Leibman M; Hochschild A
    EMBO J; 2007 Mar; 26(6):1579-90. PubMed ID: 17332752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of variably spaced promoter-like elements by the bacterial RNA polymerase holoenzyme during early elongation.
    Devi PG; Campbell EA; Darst SA; Nickels BE
    Mol Microbiol; 2010 Feb; 75(3):607-22. PubMed ID: 20070531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of Escherichia coli RNA polymerase σ70 subunit with promoter elements in the context of free σ70, RNA polymerase holoenzyme, and the β'-σ70 complex.
    Mekler V; Pavlova O; Severinov K
    J Biol Chem; 2011 Jan; 286(1):270-9. PubMed ID: 20952386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Region 1.2 of the RNA polymerase sigma subunit controls recognition of the -10 promoter element.
    Zenkin N; Kulbachinskiy A; Yuzenkova Y; Mustaev A; Bass I; Severinov K; Brodolin K
    EMBO J; 2007 Feb; 26(4):955-64. PubMed ID: 17268549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing.
    Zhilina E; Esyunina D; Brodolin K; Kulbachinskiy A
    Nucleic Acids Res; 2012 Apr; 40(7):3078-91. PubMed ID: 22140106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for transcription initiation by bacterial ECF σ factors.
    Li L; Fang C; Zhuang N; Wang T; Zhang Y
    Nat Commun; 2019 Mar; 10(1):1153. PubMed ID: 30858373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The primary σ factor in Escherichia coli can access the transcription elongation complex from solution in vivo.
    Goldman SR; Nair NU; Wells CD; Nickels BE; Hochschild A
    Elife; 2015 Sep; 4():. PubMed ID: 26371553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryo-EM structure of
    Narayanan A; Vago FS; Li K; Qayyum MZ; Yernool D; Jiang W; Murakami KS
    J Biol Chem; 2018 May; 293(19):7367-7375. PubMed ID: 29581236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective promoter recognition by chlamydial sigma28 holoenzyme.
    Shen L; Feng X; Yuan Y; Luo X; Hatch TP; Hughes KT; Liu JS; Zhang YX
    J Bacteriol; 2006 Nov; 188(21):7364-77. PubMed ID: 16936033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Σ(70)-dependent transcription pausing in Escherichia coli.
    Perdue SA; Roberts JW
    J Mol Biol; 2011 Oct; 412(5):782-92. PubMed ID: 21316374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple roles of the RNA polymerase beta subunit flap domain in sigma 54-dependent transcription.
    Wigneshweraraj SR; Kuznedelov K; Severinov K; Buck M
    J Biol Chem; 2003 Jan; 278(5):3455-65. PubMed ID: 12424241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abortive cycling and the release of polymerase for elongation at the sigma 54-dependent glnAp2 promoter.
    Tintut Y; Wang JT; Gralla JD
    J Biol Chem; 1995 Oct; 270(41):24392-8. PubMed ID: 7592652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping sigma 54-RNA polymerase interactions at the -24 consensus promoter element.
    Burrows PC; Severinov K; Ishihama A; Buck M; Wigneshweraraj SR
    J Biol Chem; 2003 Aug; 278(32):29728-43. PubMed ID: 12750380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reorganisation of an RNA polymerase-promoter DNA complex for DNA melting.
    Burrows PC; Severinov K; Buck M; Wigneshweraraj SR
    EMBO J; 2004 Oct; 23(21):4253-63. PubMed ID: 15470504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.