BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

725 related articles for article (PubMed ID: 21205896)

  • 1. A hyperactive piggyBac transposase for mammalian applications.
    Yusa K; Zhou L; Li MA; Bradley A; Craig NL
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1531-6. PubMed ID: 21205896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient Screening System in Yeast to Select a Hyperactive
    Wen W; Song S; Han Y; Chen H; Liu X; Qian Q
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32357554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile, highly efficient, and potentially safer piggyBac transposon system for mammalian genome manipulations.
    Meir YJ; Lin A; Huang MF; Lin JR; Weirauch MT; Chou HC; Lin SJ; Wu SC
    FASEB J; 2013 Nov; 27(11):4429-43. PubMed ID: 23896728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperactive self-inactivating piggyBac for transposase-enhanced pronuclear microinjection transgenesis.
    Marh J; Stoytcheva Z; Urschitz J; Sugawara A; Yamashiro H; Owens JB; Stoytchev I; Pelczar P; Yanagimachi R; Moisyadi S
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19184-9. PubMed ID: 23093669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. piggyBac transposase tools for genome engineering.
    Li X; Burnight ER; Cooney AL; Malani N; Brady T; Sander JD; Staber J; Wheelan SJ; Joung JK; McCray PB; Bushman FD; Sinn PL; Craig NL
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):E2279-87. PubMed ID: 23723351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells.
    Wu SC; Meir YJ; Coates CJ; Handler AM; Pelczar P; Moisyadi S; Kaminski JM
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15008-13. PubMed ID: 17005721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy.
    Meir YJ; Weirauch MT; Yang HS; Chung PC; Yu RK; Wu SC
    BMC Biotechnol; 2011 Mar; 11():28. PubMed ID: 21447194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. piggyBac can bypass DNA synthesis during cut and paste transposition.
    Mitra R; Fain-Thornton J; Craig NL
    EMBO J; 2008 Apr; 27(7):1097-109. PubMed ID: 18354502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperactive piggyBac gene transfer in human cells and in vivo.
    Doherty JE; Huye LE; Yusa K; Zhou L; Craig NL; Wilson MH
    Hum Gene Ther; 2012 Mar; 23(3):311-20. PubMed ID: 21992617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal mobilization and reintegration of Sleeping Beauty and PiggyBac transposons.
    Liang Q; Kong J; Stalker J; Bradley A
    Genesis; 2009 Jun; 47(6):404-8. PubMed ID: 19391106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimerization through the RING-Finger Domain Attenuates Excision Activity of the piggyBac Transposase.
    Sharma R; Nirwal S; Narayanan N; Nair DT
    Biochemistry; 2018 May; 57(20):2913-2922. PubMed ID: 29750515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of an inducible and optimized piggyBac transposon system.
    CadiƱanos J; Bradley A
    Nucleic Acids Res; 2007; 35(12):e87. PubMed ID: 17576687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nucleolus-predominant piggyBac transposase, NP-mPB, mediates elevated transposition efficiency in mammalian cells.
    Hong JB; Chou FJ; Ku AT; Fan HH; Lee TL; Huang YH; Yang TL; Su IC; Yu IS; Lin SW; Chien CL; Ho HN; Chen YT
    PLoS One; 2014; 9(2):e89396. PubMed ID: 24586748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vast potential for using the piggyBac transposon to engineer transgenic plants at specific genomic locations.
    Johnson ET; Owens JB; Moisyadi S
    Bioengineered; 2016; 7(1):3-6. PubMed ID: 26930269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal transposition of PiggyBac in mouse embryonic stem cells.
    Wang W; Lin C; Lu D; Ning Z; Cox T; Melvin D; Wang X; Bradley A; Liu P
    Proc Natl Acad Sci U S A; 2008 Jul; 105(27):9290-5. PubMed ID: 18579772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IPB7 transposase behavior in Drosophila melanogaster and Aedes aegypti.
    Wright JA; Smith RC; Li X; Craig NL; Atkinson PW
    Insect Biochem Mol Biol; 2013 Oct; 43(10):899-906. PubMed ID: 23835045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PiggyBac transposon-mediated, reversible gene transfer in human embryonic stem cells.
    Chen YT; Furushima K; Hou PS; Ku AT; Deng JM; Jang CW; Fang H; Adams HP; Kuo ML; Ho HN; Chien CL; Behringer RR
    Stem Cells Dev; 2010 Jun; 19(6):763-71. PubMed ID: 19740021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PiggyBac transposon-mediated gene transfer in human cells.
    Wilson MH; Coates CJ; George AL
    Mol Ther; 2007 Jan; 15(1):139-45. PubMed ID: 17164785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLE-wu, a new member of piggyBac transposon family from insect, is active in mammalian cells.
    Wu C; Wang S
    J Biosci Bioeng; 2014 Oct; 118(4):359-66. PubMed ID: 24751435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat.
    Furushima K; Jang CW; Chen DW; Xiao N; Overbeek PA; Behringer RR
    Genetics; 2012 Dec; 192(4):1235-48. PubMed ID: 23023007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.