These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 21205901)
1. Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity. Auriol C; Bestel-Corre G; Claude JB; Soucaille P; Meynial-Salles I Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1278-83. PubMed ID: 21205901 [TBL] [Abstract][Full Text] [Related]
2. Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain. Bouzon M; Döring V; Dubois I; Berger A; Stoffel GMM; Calzadiaz Ramirez L; Meyer SN; Fouré M; Roche D; Perret A; Erb TJ; Bar-Even A; Lindner SN mBio; 2021 Aug; 12(4):e0032921. PubMed ID: 34399608 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of a new type of NADPH-dependent quinone oxidoreductase (QOR2) from Escherichia coli. Kim IK; Yim HS; Kim MK; Kim DW; Kim YM; Cha SS; Kang SO J Mol Biol; 2008 May; 379(2):372-84. PubMed ID: 18455185 [TBL] [Abstract][Full Text] [Related]
4. Reactive Oxygen Species Production by Escherichia coli Respiratory Complex I. Frick K; Schulte M; Friedrich T Biochemistry; 2015 May; 54(18):2799-801. PubMed ID: 25897800 [TBL] [Abstract][Full Text] [Related]
5. Real-time optical studies of respiratory Complex I turnover. Belevich N; Belevich G; Verkhovskaya M Biochim Biophys Acta; 2014 Dec; 1837(12):1973-1980. PubMed ID: 25283488 [TBL] [Abstract][Full Text] [Related]
6. Alteration of cofactor specificity of the acrylyl-CoA reductase from Escherichia coli. Reshetnikov AS; But SY; Rozova ON; Mustakhimov II; Khmelenina VN Biotechnol Lett; 2021 Jul; 43(7):1421-1427. PubMed ID: 33860390 [TBL] [Abstract][Full Text] [Related]
7. Spin labeling of the Escherichia coli NADH ubiquinone oxidoreductase (complex I). Pohl T; Spatzal T; Aksoyoglu M; Schleicher E; Rostas AM; Lay H; Glessner U; Boudon C; Hellwig P; Weber S; Friedrich T Biochim Biophys Acta; 2010 Dec; 1797(12):1894-900. PubMed ID: 20959113 [TBL] [Abstract][Full Text] [Related]
9. The role of the invariant glutamate 95 in the catalytic site of Complex I from Escherichia coli. Euro L; Belevich G; Bloch DA; Verkhovsky MI; Wikström M; Verkhovskaya M Biochim Biophys Acta; 2009 Jan; 1787(1):68-73. PubMed ID: 19061856 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the effects of NADH- and NADPH-perturbation stresses on the growth of Escherichia coli. Kim S; Moon DB; Lee CH; Nam SW; Kim P Curr Microbiol; 2009 Feb; 58(2):159-63. PubMed ID: 18953603 [TBL] [Abstract][Full Text] [Related]
11. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling. Armingol E; Tobar E; Cabrera R PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222 [TBL] [Abstract][Full Text] [Related]
12. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. Sauer U; Canonaco F; Heri S; Perrenoud A; Fischer E J Biol Chem; 2004 Feb; 279(8):6613-9. PubMed ID: 14660605 [TBL] [Abstract][Full Text] [Related]
13. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Long CP; Gonzalez JE; Feist AM; Palsson BO; Antoniewicz MR Proc Natl Acad Sci U S A; 2018 Jan; 115(1):222-227. PubMed ID: 29255023 [TBL] [Abstract][Full Text] [Related]
14. A single amino acid residue controls ROS production in the respiratory Complex I from Escherichia coli. Knuuti J; Belevich G; Sharma V; Bloch DA; Verkhovskaya M Mol Microbiol; 2013 Dec; 90(6):1190-200. PubMed ID: 24325249 [TBL] [Abstract][Full Text] [Related]
15. Amino acid residues associated with cluster N3 in the NuoF subunit of the proton-translocating NADH-quinone oxidoreductase from Escherichia coli. Velazquez I; Nakamaru-Ogiso E; Yano T; Ohnishi T; Yagi T FEBS Lett; 2005 Jun; 579(14):3164-8. PubMed ID: 15922336 [TBL] [Abstract][Full Text] [Related]
16. Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene. Charusanti P; Conrad TM; Knight EM; Venkataraman K; Fong NL; Xie B; Gao Y; Palsson BØ PLoS Genet; 2010 Nov; 6(11):e1001186. PubMed ID: 21079674 [TBL] [Abstract][Full Text] [Related]
17. Direct demonstration of an adaptive constraint. Miller SP; Lunzer M; Dean AM Science; 2006 Oct; 314(5798):458-61. PubMed ID: 17053145 [TBL] [Abstract][Full Text] [Related]
18. Growth-Based, High-Throughput Selection for NADH Preference in an Oxygen-Dependent Biocatalyst. Maxel S; Saleh S; King E; Aspacio D; Zhang L; Luo R; Li H ACS Synth Biol; 2021 Sep; 10(9):2359-2370. PubMed ID: 34469126 [TBL] [Abstract][Full Text] [Related]
19. Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648 [TBL] [Abstract][Full Text] [Related]
20. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Martínez I; Zhu J; Lin H; Bennett GN; San KY Metab Eng; 2008 Nov; 10(6):352-9. PubMed ID: 18852061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]