These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21205986)

  • 1. Morphological evidence for a change in the pattern of aortic wall shear stress with age.
    Bond AR; Iftikhar S; Bharath AA; Weinberg PD
    Arterioscler Thromb Vasc Biol; 2011 Mar; 31(3):543-50. PubMed ID: 21205986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of aortic taper on patterns of blood flow and wall shear stress in rabbits: association with age.
    Peiffer V; Rowland EM; Cremers SG; Weinberg PD; Sherwin SJ
    Atherosclerosis; 2012 Jul; 223(1):114-21. PubMed ID: 22658260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of wall shear stress on the morphology and permeability of endothelial cells in stenotic rabbit abdominal aorta].
    Wu Y; Deng X; Zhen X; Wang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):225-9. PubMed ID: 15884523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis.
    Suo J; Ferrara DE; Sorescu D; Guldberg RE; Taylor WR; Giddens DP
    Arterioscler Thromb Vasc Biol; 2007 Feb; 27(2):346-51. PubMed ID: 17122449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
    Rouleau L; Farcas M; Tardif JC; Mongrain R; Leask RL
    J Biomech Eng; 2010 Aug; 132(8):081013. PubMed ID: 20670062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of the role of wall shear in atherosclerosis.
    Caro CG
    Arterioscler Thromb Vasc Biol; 2009 Feb; 29(2):158-61. PubMed ID: 19038849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p38 Mitogen-activated protein kinase activation in endothelial cell is implicated in cell alignment and elongation induced by fluid shear stress.
    Kadohama T; Akasaka N; Nishimura K; Hoshino Y; Sasajima T; Sumpio BE
    Endothelium; 2006; 13(1):43-50. PubMed ID: 16885066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of shear stress on endothelial cell shapes and junction complexes at flow dividers of aortic bifurcations in cholesterol-fed rabbits.
    Okano M; Yoshida Y
    Front Med Biol Eng; 1993; 5(2):95-120. PubMed ID: 8241035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis.
    Chiu JJ; Usami S; Chien S
    Ann Med; 2009; 41(1):19-28. PubMed ID: 18608132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphing the topography of atherosclerosis: an unexpected role for PECAM-1.
    Cybulsky MI
    Arterioscler Thromb Vasc Biol; 2008 Nov; 28(11):1887-9. PubMed ID: 18946053
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for a reversal with age in the pattern of near-wall blood flow around aortic branches.
    Al-Musawi SL; Bishton J; Dean J; Williams S; Cremers SG; Weinberg PD
    Atherosclerosis; 2004 Jan; 172(1):79-84. PubMed ID: 14709360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The response of human aortic endothelial cells in a stenotic hemodynamic environment: effect of duration, magnitude, and spatial gradients in wall shear stress.
    Rouleau L; Rossi J; Leask RL
    J Biomech Eng; 2010 Jul; 132(7):071015. PubMed ID: 20590293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.
    Glagov S; Zarins C; Giddens DP; Ku DN
    Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the fluid mechanics behind transverse wall shear stress.
    Mohamied Y; Sherwin SJ; Weinberg PD
    J Biomech; 2017 Jan; 50():102-109. PubMed ID: 27863740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial calcium signaling in rabbit arteries and its local alterations in early-stage atherosclerosis.
    Chen HI; Huang YC; Su WH; Jen CJ
    J Biomed Sci; 2007 Jan; 14(1):145-53. PubMed ID: 17086486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coronary endothelium expresses a pathologic gene pattern compared to aortic endothelium: correlation of asynchronous hemodynamics and pathology in vivo.
    Dancu MB; Tarbell JM
    Atherosclerosis; 2007 May; 192(1):9-14. PubMed ID: 16806232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of shear stress direction in endothelial mechanotransduction.
    Chien S
    Mol Cell Biomech; 2008 Mar; 5(1):1-8. PubMed ID: 18524241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turbulent flow/low wall shear stress and stretch differentially affect aorta remodeling in rats.
    Prado CM; Ramos SG; Alves-Filho JC; Elias J; Cunha FQ; Rossi MA
    J Hypertens; 2006 Mar; 24(3):503-15. PubMed ID: 16467654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intimal cushions and endothelial nuclear elongation around mouse aortic branches and their spatial correspondence with patterns of lipid deposition.
    Bond AR; Ni CW; Jo H; Weinberg PD
    Am J Physiol Heart Circ Physiol; 2010 Feb; 298(2):H536-44. PubMed ID: 19933414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone morphogenic protein antagonists are coexpressed with bone morphogenic protein 4 in endothelial cells exposed to unstable flow in vitro in mouse aortas and in human coronary arteries: role of bone morphogenic protein antagonists in inflammation and atherosclerosis.
    Chang K; Weiss D; Suo J; Vega JD; Giddens D; Taylor WR; Jo H
    Circulation; 2007 Sep; 116(11):1258-66. PubMed ID: 17785623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.