These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 21206954)

  • 1. Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies.
    Li Y; Cao H; Yu H; Chen Y; Lau K; Qu J; Thon V; Sugiarto G; Chen X
    Mol Biosyst; 2011 Apr; 7(4):1060-72. PubMed ID: 21206954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2.
    Khedri Z; Li Y; Cao H; Qu J; Yu H; Muthana MM; Chen X
    Org Biomol Chem; 2012 Aug; 10(30):6112-20. PubMed ID: 22641268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoenzymatic synthesis of sialosides containing C7-modified sialic acids and their application in sialidase substrate specificity studies.
    Khedri Z; Li Y; Muthana S; Muthana MM; Hsiao CW; Yu H; Chen X
    Carbohydr Res; 2014 May; 389():100-11. PubMed ID: 24680514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effects and specificity of synthetic sialyldendrimers toward recombinant human cytosolic sialidase 2 (NEU2).
    Rahman MM; Kitao S; Tsuji D; Suzuki K; Sakamoto J; Matsuoka K; Matsuzawa F; Aikawa S; Itoh K
    Glycobiology; 2013 Apr; 23(4):495-504. PubMed ID: 23363739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoenzymatic synthesis of para-nitrophenol (pNP)-tagged α2-8-sialosides and high-throughput substrate specificity studies of α2-8-sialidases.
    Tasnima N; Yu H; Li Y; Santra A; Chen X
    Org Biomol Chem; 2016 Dec; 15(1):160-167. PubMed ID: 27924345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homology modeling of human sialidase enzymes NEU1, NEU3 and NEU4 based on the crystal structure of NEU2: hints for the design of selective NEU3 inhibitors.
    Magesh S; Suzuki T; Miyagi T; Ishida H; Kiso M
    J Mol Graph Model; 2006 Oct; 25(2):196-207. PubMed ID: 16427342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the human cytosolic sialidase Neu2. Evidence for the dynamic nature of substrate recognition.
    Chavas LM; Tringali C; Fusi P; Venerando B; Tettamanti G; Kato R; Monti E; Wakatsuki S
    J Biol Chem; 2005 Jan; 280(1):469-75. PubMed ID: 15501818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of a novel human sialidase encoded by the NEU2 gene.
    Monti E; Preti A; Nesti C; Ballabio A; Borsani G
    Glycobiology; 1999 Dec; 9(12):1313-21. PubMed ID: 10561456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of a novel, versatile sialidase from a Sphingobacterium that can hydrolyze the glycosides of any sialic acid species at neutral pH.
    Iwaki Y; Matsunaga E; Takegawa K; Sato C; Kitajima K
    Biochem Biophys Res Commun; 2020 Mar; 523(2):487-492. PubMed ID: 31889533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Aspergillus fumigatus sialidase is a 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid hydrolase (KDNase): structural and mechanistic insights.
    Telford JC; Yeung JH; Xu G; Kiefel MJ; Watts AG; Hader S; Chan J; Bennet AJ; Moore MM; Taylor GL
    J Biol Chem; 2011 Mar; 286(12):10783-92. PubMed ID: 21247893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of a new type of sialidase, "KDNase," which specifically hydrolyzes deaminoneuraminyl (3-deoxy-D-glycero-D-galacto-2-nonulosonic acid) but not N-acylneuraminyl linkages.
    Kitajima K; Kuroyanagi H; Inoue S; Ye J; Troy FA; Inoue Y
    J Biol Chem; 1994 Aug; 269(34):21415-9. PubMed ID: 8063773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sialidase substrate specificity studies using chemoenzymatically synthesized sialosides containing C5-modified sialic acids.
    Cao H; Li Y; Lau K; Muthana S; Yu H; Cheng J; Chokhawala HA; Sugiarto G; Zhang L; Chen X
    Org Biomol Chem; 2009 Dec; 7(24):5137-45. PubMed ID: 20024109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel fish sialidase genes responsible for KDN-cleaving activity.
    Shiozaki K; Uezono K; Hirai G; Honda A; Minoda M; Wakata R
    Glycoconj J; 2020 Dec; 37(6):745-753. PubMed ID: 32980954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN)- and N-acetylneuraminic acid-cleaving sialidase (KDN-sialidase) and KDN-cleaving hydrolase (KDNase) from the hepatopancreas of oyster, Crassostrea virginica.
    Pavlova NV; Yuziuk JA; Nakagawa H; Kiso M; Li SC; Li YT
    J Biol Chem; 1999 Nov; 274(45):31974-80. PubMed ID: 10542227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular insight into substrate recognition by human cytosolic sialidase NEU2.
    Mozzi A; Mazzacuva P; Zampella G; Forcella ME; Fusi PA; Monti E
    Proteins; 2012 Apr; 80(4):1123-32. PubMed ID: 22228546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of cloned Salmonella typhimurium LT2 sialidase with virus-typical kinetic preference for sialyl alpha 2----3 linkages.
    Hoyer LL; Roggentin P; Schauer R; Vimr ER
    J Biochem; 1991 Sep; 110(3):462-7. PubMed ID: 1769974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights on the sialidase protein family revealed by a phylogenetic analysis in metazoa.
    Giacopuzzi E; Bresciani R; Schauer R; Monti E; Borsani G
    PLoS One; 2012; 7(8):e44193. PubMed ID: 22952925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 9-Azido-9-deoxy-2,3-difluorosialic Acid as a Subnanomolar Inhibitor against Bacterial Sialidases.
    Li W; Santra A; Yu H; Slack TJ; Muthana MM; Shi D; Liu Y; Chen X
    J Org Chem; 2019 Jun; 84(11):6697-6708. PubMed ID: 31083938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalysis by a new sialidase, deaminoneuraminic acid residue-cleaving enzyme (KDNase Sm), initially forms a less stable alpha-anomer of 3-deoxy-D-glycero-D-galacto-nonulosonic acid and is strongly inhibited by the transition state analogue, 2-deoxy-2, 3-didehydro-D-glycero-D-galacto-2-nonulopyranosonic acid, but not by 2-deoxy-2,3-didehydro-N-acetylneuraminic acid.
    Terada T; Kitajima K; Inoue S; Wilson JC; Norton AK; Kong DC; Thomson RJ; von Itzstein M; Inoue Y
    J Biol Chem; 1997 Feb; 272(9):5452-6. PubMed ID: 9038146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput neuraminidase substrate specificity study of human and avian influenza A viruses.
    Li Y; Cao H; Dao N; Luo Z; Yu H; Chen Y; Xing Z; Baumgarth N; Cardona C; Chen X
    Virology; 2011 Jun; 415(1):12-9. PubMed ID: 21501853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.