These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer's disease. Peng J; Guo K; Xia J; Zhou J; Yang J; Westaway D; Wishart DS; Li L J Proteome Res; 2014 Oct; 13(10):4457-69. PubMed ID: 25164377 [TBL] [Abstract][Full Text] [Related]
24. Liquid chromatography tandem mass spectrometry for measuring ¹³C-labeling in intermediates of the glycolysis and pentose phosphate pathway. Cocuron JC; Alonso AP Methods Mol Biol; 2014; 1090():131-42. PubMed ID: 24222414 [TBL] [Abstract][Full Text] [Related]
26. Absolute Quantification of Cell-Free Protein Synthesis Metabolism by Reversed-Phase Liquid Chromatography-Mass Spectrometry. Vilkhovoy M; Dai D; Vadhin S; Adhikari A; Varner JD J Vis Exp; 2019 Oct; (152):. PubMed ID: 31710042 [TBL] [Abstract][Full Text] [Related]
27. Mass spectrometry-based metabolomics of yeast. Crutchfield CA; Lu W; Melamud E; Rabinowitz JD Methods Enzymol; 2010; 470():393-426. PubMed ID: 20946819 [TBL] [Abstract][Full Text] [Related]
28. Quantification of intracellular phosphorylated carbohydrates in HT29 human colon adenocarcinoma cell line using liquid chromatography-electrospray ionization tandem mass spectrometry. Vizán P; Alcarraz-Vizán G; Díaz-Moralli S; Rodríguez-Prados JC; Zanuy M; Centelles JJ; Jáuregui O; Cascante M Anal Chem; 2007 Jul; 79(13):5000-5. PubMed ID: 17523595 [TBL] [Abstract][Full Text] [Related]
29. Quantitative analysis of metabolites in complex biological samples using ion-pair reversed-phase liquid chromatography-isotope dilution tandem mass spectrometry. Seifar RM; Zhao Z; van Dam J; van Winden W; van Gulik W; Heijnen JJ J Chromatogr A; 2008 Apr; 1187(1-2):103-10. PubMed ID: 18295225 [TBL] [Abstract][Full Text] [Related]
30. Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples. Guo K; Ji C; Li L Anal Chem; 2007 Nov; 79(22):8631-8. PubMed ID: 17927139 [TBL] [Abstract][Full Text] [Related]
31. Collisional fragmentation of central carbon metabolites in LC-MS/MS increases precision of ¹³C metabolic flux analysis. Rühl M; Rupp B; Nöh K; Wiechert W; Sauer U; Zamboni N Biotechnol Bioeng; 2012 Mar; 109(3):763-71. PubMed ID: 22012626 [TBL] [Abstract][Full Text] [Related]
32. Derivatization-independent cholesterol analysis in crude lipid extracts by liquid chromatography/mass spectrometry: applications to a rabbit model for atherosclerosis. Shui G; Cheong WF; Jappar IA; Hoi A; Xue Y; Fernandis AZ; Tan BK; Wenk MR J Chromatogr A; 2011 Jul; 1218(28):4357-65. PubMed ID: 21621788 [TBL] [Abstract][Full Text] [Related]
33. Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry. Mano N; Oda Y; Yamada K; Asakawa N; Katayama K Anal Biochem; 1997 Jan; 244(2):291-300. PubMed ID: 9025946 [TBL] [Abstract][Full Text] [Related]
34. Quantitative profiling of polar cationic metabolites in human cerebrospinal fluid by reversed-phase nanoliquid chromatography/mass spectrometry. Myint KT; Aoshima K; Tanaka S; Nakamura T; Oda Y Anal Chem; 2009 Feb; 81(3):1121-9. PubMed ID: 19125563 [TBL] [Abstract][Full Text] [Related]
35. Development of isotope labeling liquid chromatography-mass spectrometry for metabolic profiling of bacterial cells and its application for bacterial differentiation. Wu Y; Li L Anal Chem; 2013 Jun; 85(12):5755-63. PubMed ID: 23495969 [TBL] [Abstract][Full Text] [Related]
36. Characterization of metabolites in rat plasma after intravenous administration of salvianolic acid A by liquid chromatography/time-of-flight mass spectrometry and liquid chromatography/ion trap mass spectrometry. Shen Y; Wang X; Xu L; Liu X; Chao R Rapid Commun Mass Spectrom; 2009 Jun; 23(12):1810-6. PubMed ID: 19437443 [TBL] [Abstract][Full Text] [Related]
37. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. Bajad SU; Lu W; Kimball EH; Yuan J; Peterson C; Rabinowitz JD J Chromatogr A; 2006 Aug; 1125(1):76-88. PubMed ID: 16759663 [TBL] [Abstract][Full Text] [Related]
38. In vitro and in vivo investigation of metabolic fate of rifampicin using an optimized sample preparation approach and modern tools of liquid chromatography-mass spectrometry. Prasad B; Singh S J Pharm Biomed Anal; 2009 Oct; 50(3):475-90. PubMed ID: 19535209 [TBL] [Abstract][Full Text] [Related]
39. Advantage of LC-MS metabolomics methodology targeting hydrophilic compounds in the studies of fermented food samples. Yoshida H; Yamazaki J; Ozawa S; Mizukoshi T; Miyano H J Agric Food Chem; 2009 Feb; 57(4):1119-26. PubMed ID: 19170502 [TBL] [Abstract][Full Text] [Related]
40. Simultaneous quantification of free nucleotides in complex biological samples using ion pair reversed phase liquid chromatography isotope dilution tandem mass spectrometry. Seifar RM; Ras C; van Dam JC; van Gulik WM; Heijnen JJ; van Winden WA Anal Biochem; 2009 May; 388(2):213-9. PubMed ID: 19250917 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]