BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 21207588)

  • 1. A piggyback ride for transition metals: encapsulation of exohedral metallofullerenes in carbon nanotubes.
    Chamberlain TW; Champness NR; Schröder M; Khlobystov AN
    Chemistry; 2011 Jan; 17(2):668-74. PubMed ID: 21207588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endohedral metal atoms in pristine and functionalized fullerene cages.
    Yamada M; Akasaka T; Nagase S
    Acc Chem Res; 2010 Jan; 43(1):92-102. PubMed ID: 19728726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fullerenes as Nanocontainers That Stabilize Unique Actinide Species Inside: Structures, Formation, and Reactivity.
    Cai W; Chen CH; Chen N; Echegoyen L
    Acc Chem Res; 2019 Jul; 52(7):1824-1833. PubMed ID: 31260256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endohedral metallofullerenes based on spherical I(h)-C(80) cage: molecular structures and paramagnetic properties.
    Wang T; Wang C
    Acc Chem Res; 2014 Feb; 47(2):450-8. PubMed ID: 24328037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exohedral reactivity of trimetallic nitride template (TNT) endohedral metallofullerenes.
    Campanera JM; Bo C; Poblet JM
    J Org Chem; 2006 Jan; 71(1):46-54. PubMed ID: 16388616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endohedral chemistry of C60-based fullerene cages.
    Hu YH; Ruckenstein E
    J Am Chem Soc; 2005 Aug; 127(32):11277-82. PubMed ID: 16089455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entrapping of exohedral metallofullerenes in carbon nanotubes: (CsC60)n@SWNT nano-peapods.
    Sun BY; Sato Y; Suenaga K; Okazaki T; Kishi N; Sugai T; Bandow S; Iijima S; Shinohara H
    J Am Chem Soc; 2005 Dec; 127(51):17972-3. PubMed ID: 16366526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metal complexes of a salen-fullerene diad: redox and catalytically active nanostructures for delivery of metals in nanotubes.
    Lebedeva MA; Chamberlain TW; Davies ES; Mancel D; Thomas BE; Suyetin M; Bichoutskaia E; Schröder M; Khlobystov AN
    Chemistry; 2013 Sep; 19(36):11999-2008. PubMed ID: 23881673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes.
    Vizuete M; Barrejón M; Gómez-Escalonilla MJ; Langa F
    Nanoscale; 2012 Aug; 4(15):4370-81. PubMed ID: 22706450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current progress on the chemical functionalization and supramolecular chemistry of M@C82.
    Maeda Y; Tsuchiya T; Lu X; Takano Y; Akasaka T; Nagase S
    Nanoscale; 2011 Jun; 3(6):2421-9. PubMed ID: 21483901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of molecular clusters in the filling of carbon nanotubes.
    Chamberlain TW; Popov AM; Knizhnik AA; Samoilov GE; Khlobystov AN
    ACS Nano; 2010 Sep; 4(9):5203-10. PubMed ID: 20831176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bonding inside and outside Fullerene Cages.
    Bao L; Peng P; Lu X
    Acc Chem Res; 2018 Mar; 51(3):810-815. PubMed ID: 29485263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The smallest stable fullerene, M@C28 (m = Ti, Zr, U): stabilization and growth from carbon vapor.
    Dunk PW; Kaiser NK; Mulet-Gas M; Rodríguez-Fortea A; Poblet JM; Shinohara H; Hendrickson CL; Marshall AG; Kroto HW
    J Am Chem Soc; 2012 Jun; 134(22):9380-9. PubMed ID: 22519801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating the thermal behavior and fragmentation mechanisms of exohedral and substitutional silicon-doped C60.
    Marcos PA; Alonso JA; López MJ
    J Chem Phys; 2005 Nov; 123(20):204323. PubMed ID: 16351272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exohedral silicon fullerenes: SiNPtN/2 (20Pei Y; Gao Y; Zeng XC
    J Chem Phys; 2007 Jul; 127(4):044704. PubMed ID: 17672714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of Endohedral Metallofullerenes with Reactive Silicon and Germanium Compounds.
    Kako M; Nagase S; Akasaka T
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28708116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical reactivity of D3h C78 (metallo)fullerene: regioselectivity changes induced by Sc3N encapsulation.
    Osuna S; Swart M; Campanera JM; Poblet JM; Solà M
    J Am Chem Soc; 2008 May; 130(19):6206-14. PubMed ID: 18412347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bond order bond polarizability model for fullerene cages and nanotubes.
    Hu YH; Ruckenstein E
    J Chem Phys; 2005 Dec; 123(21):214708. PubMed ID: 16356062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positional control of encapsulated atoms inside a fullerene cage by exohedral addition.
    Yamada M; Nakahodo T; Wakahara T; Tsuchiya T; Maeda Y; Akasaka T; Kako M; Yoza K; Horn E; Mizorogi N; Kobayashi K; Nagase S
    J Am Chem Soc; 2005 Oct; 127(42):14570-1. PubMed ID: 16231899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between fullerenes and single-wall carbon nanotubes: the influence of fullerene size and electronic structure.
    Hao J; Guan L; Guo X; Lian Y; Zhao S; Dong J; Yang S; Zhang H; Sun B
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7857-62. PubMed ID: 22097497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.