BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 21207952)

  • 21. A structural view on spider silk proteins and their role in fiber assembly.
    Hagn F
    J Pept Sci; 2012 Jun; 18(6):357-65. PubMed ID: 22570231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A proposed model for dragline spider silk self-assembly: insights from the effect of the repetitive domain size on fiber properties.
    Ittah S; Barak N; Gat U
    Biopolymers; 2010 May; 93(5):458-68. PubMed ID: 20014164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomaterial coatings by stepwise deposition of silk fibroin.
    Wang X; Kim HJ; Xu P; Matsumoto A; Kaplan DL
    Langmuir; 2005 Nov; 21(24):11335-41. PubMed ID: 16285808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of recombinantly produced spider flagelliform silk domains.
    Heim M; Ackerschott CB; Scheibel T
    J Struct Biol; 2010 May; 170(2):420-5. PubMed ID: 20045468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature-dependent interfacial properties of hydrophobically end-modified poly(2-isopropyl-2-oxazoline)s assemblies at the air/water interface and on solid substrates.
    Obeid R; Park JY; Advincula RC; Winnik FM
    J Colloid Interface Sci; 2009 Dec; 340(2):142-52. PubMed ID: 19796770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A model for the structure of the C-terminal domain of dragline spider silk and the role of its conserved cysteine.
    Ittah S; Michaeli A; Goldblum A; Gat U
    Biomacromolecules; 2007 Sep; 8(9):2768-73. PubMed ID: 17696395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticle self-assembly by a highly stable recombinant spider wrapping silk protein subunit.
    Xu L; Tremblay ML; Orrell KE; Leclerc J; Meng Q; Liu XQ; Rainey JK
    FEBS Lett; 2013 Oct; 587(19):3273-80. PubMed ID: 23994530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein.
    Tian M; Lewis RV
    Biochemistry; 2005 Jun; 44(22):8006-12. PubMed ID: 15924419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775).
    Blackledge TA; Hayashi CY
    J Exp Biol; 2006 Jul; 209(Pt 13):2452-61. PubMed ID: 16788028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of biofunctional nanomaterials via Escherichia coli OmpF protein air/water interface insertion/integration with copolymeric amphiphiles.
    Ho D; Chang S; Montemagno CD
    Nanomedicine; 2006 Jun; 2(2):103-12. PubMed ID: 17292122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processing conditions for the formation of spider silk microspheres.
    Lammel A; Schwab M; Slotta U; Winter G; Scheibel T
    ChemSusChem; 2008; 1(5):413-6. PubMed ID: 18702135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and characterization of multiblock copolymers based on spider dragline silk proteins.
    Zhou C; Leng B; Yao J; Qian J; Chen X; Zhou P; Knight DP; Shao Z
    Biomacromolecules; 2006 Aug; 7(8):2415-9. PubMed ID: 16903690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel two-dimensional "ring and chain" morphologies in Langmuir-Blodgett monolayers of PS-b-PEO block copolymers: effect of spreading solution concentration on self-assembly at the air-water interface.
    Cheyne RB; Moffitt MG
    Langmuir; 2005 Jun; 21(12):5453-60. PubMed ID: 15924475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Langmuir-Blodgett-Kuhn and self-assembled films of asymmetrically substituted poly(paraphenylene).
    Fitrilawati F; Renu R; Baskar C; Xu LG; Chan HS; Valiyaveettil S; Tamada K; Knoll W
    Langmuir; 2005 Dec; 21(26):12146-52. PubMed ID: 16342986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unique molecular architecture of egg case silk protein in a spider, Nephila clavata.
    Zhao A; Zhao T; Sima Y; Zhang Y; Nakagaki K; Miao Y; Shiomi K; Kajiura Z; Nagata Y; Nakagaki M
    J Biochem; 2005 Nov; 138(5):593-604. PubMed ID: 16272571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An experimental confirmation of thermal transitions in native and regenerated spider silks.
    Torres FG; Troncoso OP; Torres C; Cabrejos W
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1432-7. PubMed ID: 23827592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polystyrene-b-poly(tert-butyl acrylate) and polystyrene-b-poly(acrylic acid) dendrimer-like copolymers: two-dimensional self-assembly at the air-water interface.
    Joncheray TJ; Bernard SA; Matmour R; Lepoittevin B; El-Khouri RJ; Taton D; Gnanou Y; Duran RS
    Langmuir; 2007 Feb; 23(5):2531-8. PubMed ID: 17309207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and mechanical properties of spider silk films at the air-water interface.
    Renault A; Rioux-Dubé JF; Lefèvre T; Beaufils S; Vié V; Paquet-Mercier F; Pézolet M
    Langmuir; 2013 Jun; 29(25):7931-8. PubMed ID: 23721197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular nanosprings in spider capture-silk threads.
    Becker N; Oroudjev E; Mutz S; Cleveland JP; Hansma PK; Hayashi CY; Makarov DE; Hansma HG
    Nat Mater; 2003 Apr; 2(4):278-83. PubMed ID: 12690403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spider flagelliform silk: lessons in protein design, gene structure, and molecular evolution.
    Hayashi CY; Lewis RV
    Bioessays; 2001 Aug; 23(8):750-6. PubMed ID: 11494324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.