BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 21207998)

  • 1. Amplified detection of microRNA based on ruthenium oxide nanoparticle-initiated deposition of an insulating film.
    Peng Y; Gao Z
    Anal Chem; 2011 Feb; 83(3):820-7. PubMed ID: 21207998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A label-free biosensor for electrochemical detection of femtomolar microRNAs.
    Gao Z; Deng H; Shen W; Ren Y
    Anal Chem; 2013 Feb; 85(3):1624-30. PubMed ID: 23323518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A label-free microRNA biosensor based on DNAzyme-catalyzed and microRNA-guided formation of a thin insulating polymer film.
    Shen W; Deng H; Ren Y; Gao Z
    Biosens Bioelectron; 2013 Jun; 44():171-6. PubMed ID: 23425556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly sensitive and specific biosensor for ligation- and PCR-free detection of microRNAs.
    Gao Z; Peng Y
    Biosens Bioelectron; 2011 May; 26(9):3768-73. PubMed ID: 21420848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly sensitive microRNA biosensor based on ruthenium oxide nanoparticle-initiated polymerization of aniline.
    Peng Y; Yi G; Gao Z
    Chem Commun (Camb); 2010 Dec; 46(48):9131-3. PubMed ID: 21042626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly sensitive microRNA biosensor based on hybridized microRNA-guided deposition of polyaniline.
    Deng H; Shen W; Ren Y; Gao Z
    Biosens Bioelectron; 2014 Oct; 60():195-200. PubMed ID: 24811193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip.
    Mao X; Ma Y; Zhang A; Zhang L; Zeng L; Liu G
    Anal Chem; 2009 Feb; 81(4):1660-8. PubMed ID: 19159221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system.
    Yin H; Zhou Y; Zhang H; Meng X; Ai S
    Biosens Bioelectron; 2012 Mar; 33(1):247-53. PubMed ID: 22317835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of MicroRNAs using target-guided formation of conducting polymer nanowires in nanogaps.
    Fan Y; Chen X; Trigg AD; Tung CH; Kong J; Gao Z
    J Am Chem Soc; 2007 May; 129(17):5437-43. PubMed ID: 17411036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical DNA biosensor for the detection of DNA hybridization with the amplification of Au nanoparticles and CdS nanoparticles.
    Du P; Li H; Mei Z; Liu S
    Bioelectrochemistry; 2009 Apr; 75(1):37-43. PubMed ID: 19251488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum.
    Ren Y; Deng H; Shen W; Gao Z
    Anal Chem; 2013 May; 85(9):4784-9. PubMed ID: 23594156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-initiated DNA self-assembly as an enzyme-free and nanoparticle-free strategy towards signal amplification of an electrochemical DNA sensor.
    Zheng Y; Li Y; Lu N; Deng Z
    Analyst; 2011 Feb; 136(3):459-62. PubMed ID: 21103518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical detection of oligonucleotide using an aggregate of gold nanoparticles as a conductive tag.
    Fang C; Fan Y; Kong J; Gao Z; Balasubramanian N
    Anal Chem; 2008 Dec; 80(24):9387-94. PubMed ID: 19072259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of electrochemical DNA biosensor based on gold nanoparticle modified electrode by electroless deposition.
    Liu S; Liu J; Wang L; Zhao F
    Bioelectrochemistry; 2010 Aug; 79(1):37-42. PubMed ID: 19914151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical detection of DNA hybridization based on signal DNA probe modified with Au and apoferritin nanoparticles.
    Yu F; Li G; Qu B; Cao W
    Biosens Bioelectron; 2010 Nov; 26(3):1114-7. PubMed ID: 20833018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated dual functional recognition/amplification bio-label for the one-step impedimetric detection of Micro-RNA-21.
    Azzouzi S; Mak WC; Kor K; Turner APF; Ali MB; Beni V
    Biosens Bioelectron; 2017 Jun; 92():154-161. PubMed ID: 28213328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahighly sensitive homogeneous detection of DNA and microRNA by using single-silver-nanoparticle counting.
    Xu F; Dong C; Xie C; Ren J
    Chemistry; 2010 Jan; 16(3):1010-6. PubMed ID: 19938021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA detection using lateral flow nucleic acid strips with gold nanoparticles.
    Hou SY; Hsiao YL; Lin MS; Yen CC; Chang CS
    Talanta; 2012 Sep; 99():375-9. PubMed ID: 22967567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exponential amplification for chemiluminescence resonance energy transfer detection of microRNA in real samples based on a cross-catalyst strand-displacement network.
    Bi S; Zhang J; Hao S; Ding C; Zhang S
    Anal Chem; 2011 May; 83(10):3696-702. PubMed ID: 21446757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon nanowire biosensor for ultrasensitive and label-free direct detection of miRNAs.
    Zhang GJ
    Methods Mol Biol; 2011; 676():111-21. PubMed ID: 20931394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.