These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 21208010)
1. Carbon nanotubes: how strong is their bond with the substrate? Lahiri I; Lahiri D; Jin S; Agarwal A; Choi W ACS Nano; 2011 Feb; 5(2):780-7. PubMed ID: 21208010 [TBL] [Abstract][Full Text] [Related]
2. Growth and characterization of horizontally suspended CNTs across TiN electrode gaps. Santini CA; Cott DJ; Romo-Negreira A; Capraro BD; Sanseverino SR; De Gendt S; Groeseneken G; Vereecken PM Nanotechnology; 2010 Jun; 21(24):245604. PubMed ID: 20498525 [TBL] [Abstract][Full Text] [Related]
3. Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue. Jang MJ; Namgung S; Hong S; Nam Y Nanotechnology; 2010 Jun; 21(23):235102. PubMed ID: 20463384 [TBL] [Abstract][Full Text] [Related]
4. Quantifying bonding strength of CuO nanotubes with substrate using the nano-scratch technique. Saini K; Manoj Kumar R; Lahiri D; Lahiri I Nanotechnology; 2015 Jul; 26(30):305701. PubMed ID: 26148461 [TBL] [Abstract][Full Text] [Related]
5. Direct growth of aligned carbon nanotubes on bulk metals. Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161 [TBL] [Abstract][Full Text] [Related]
6. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221 [TBL] [Abstract][Full Text] [Related]
7. Iridescence of patterned carbon nanotube forests on flexible substrates: from darkest materials to colorful films. Hsieh KC; Tsai TY; Wan D; Chen HL; Tai NH ACS Nano; 2010 Mar; 4(3):1327-36. PubMed ID: 20184384 [TBL] [Abstract][Full Text] [Related]
8. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Tawfick S; O'Brien K; Hart AJ Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444 [TBL] [Abstract][Full Text] [Related]
9. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Capek I Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856 [TBL] [Abstract][Full Text] [Related]
10. Laser induced selective removal of metallic carbon nanotubes. Mahjouri-Samani M; Zhou YS; Xiong W; Gao Y; Mitchell M; Lu YF Nanotechnology; 2009 Dec; 20(49):495202. PubMed ID: 19893146 [TBL] [Abstract][Full Text] [Related]
11. The dynamics of polymerized carbon nanotubes in semiconductor polymer electronics and electro-mechanical sensing. Anand SV; Mahapatra DR Nanotechnology; 2009 Apr; 20(14):145707. PubMed ID: 19420537 [TBL] [Abstract][Full Text] [Related]
12. Interface enhancement of glass fiber reinforced vinyl ester composites with flame-synthesized carbon nanotubes and its enhancing mechanism. Liao L; Wang X; Fang P; Liew KM; Pan C ACS Appl Mater Interfaces; 2011 Feb; 3(2):534-8. PubMed ID: 21291279 [TBL] [Abstract][Full Text] [Related]
13. A metallization and bonding approach for high performance carbon nanotube thermal interface materials. Cross R; Cola BA; Fisher T; Xu X; Gall K; Graham S Nanotechnology; 2010 Nov; 21(44):445705. PubMed ID: 20935353 [TBL] [Abstract][Full Text] [Related]
14. Low temperature thermocompression bonding between aligned carbon nanotubes and metallized substrate. Chen MX; Song XH; Gan ZY; Liu S Nanotechnology; 2011 Aug; 22(34):345704. PubMed ID: 21795770 [TBL] [Abstract][Full Text] [Related]
15. A multiscale approach for modeling the early stage growth of single and multiwall carbon nanotubes produced by a metal-catalyzed synthesis process. Elliott JA; Hamm M; Shibuta Y J Chem Phys; 2009 Jan; 130(3):034704. PubMed ID: 19173534 [TBL] [Abstract][Full Text] [Related]
16. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. Engel M; Small JP; Steiner M; Freitag M; Green AA; Hersam MC; Avouris P ACS Nano; 2008 Dec; 2(12):2445-52. PubMed ID: 19206278 [TBL] [Abstract][Full Text] [Related]
17. Abrasion as a catalyst deposition technique for carbon nanotube growth. Alvarez NT; Pint CL; Hauge RH; Tour JM J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728 [TBL] [Abstract][Full Text] [Related]
18. Bond strength of individual carbon nanotubes grown directly on carbon fibers. Kim KJ; Lee G; Kim SD; Kim SI; Youk JH; Lee J; Kim YW; Yu WR Nanotechnology; 2016 Oct; 27(40):405704. PubMed ID: 27581367 [TBL] [Abstract][Full Text] [Related]
19. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study. Nelson TR; Chaban VV; Kalugin ON; Prezhdo OV J Phys Chem B; 2010 Apr; 114(13):4609-14. PubMed ID: 20230009 [TBL] [Abstract][Full Text] [Related]