BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21208503)

  • 21. Polyamines and their metabolizing enzymes in human frontal cortex and hippocampus: preliminary measurements in affective disorders.
    Gilad GM; Gilad VH; Casanova MF; Casero RA
    Biol Psychiatry; 1995 Aug; 38(4):227-34. PubMed ID: 8547444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion.
    Vujcic S; Liang P; Diegelman P; Kramer DL; Porter CW
    Biochem J; 2003 Feb; 370(Pt 1):19-28. PubMed ID: 12477380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses.
    Bae H; Kim SH; Kim MS; Sicher RC; Lary D; Strem MD; Natarajan S; Bailey BA
    Plant Physiol Biochem; 2008 Feb; 46(2):174-88. PubMed ID: 18042394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyamine catabolism in platinum drug action: Interactions between oxaliplatin and the polyamine analogue N1,N11-diethylnorspermine at the level of spermidine/spermine N1-acetyltransferase.
    Hector S; Porter CW; Kramer DL; Clark K; Prey J; Kisiel N; Diegelman P; Chen Y; Pendyala L
    Mol Cancer Ther; 2004 Jul; 3(7):813-22. PubMed ID: 15252142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of S-adenosyl-1,8-diamino-3-thio-octane and S-methyl-5'-methylthioadenosine on polyamine synthesis in Ehrlich ascites-tumour cells.
    Holm I; Persson L; Pegg AE; Heby O
    Biochem J; 1989 Jul; 261(1):205-10. PubMed ID: 2775206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical evaluation of the anticancer potential of the polyamine-based nanocarrier Nano11047.
    Murray-Stewart T; Ferrari E; Xie Y; Yu F; Marton LJ; Oupicky D; Casero RA
    PLoS One; 2017; 12(4):e0175917. PubMed ID: 28423064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of ornithine decarboxylase and polyamines in glucocorticoid-induced apoptosis of rat thymocytes.
    Desiderio MA; Grassilli E; Bellesia E; Salomoni P; Franceschi C
    Cell Growth Differ; 1995 May; 6(5):505-13. PubMed ID: 7647033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of polyamine reutilization in depletion of cellular stores of polyamines in non-proliferating tissues.
    Bolkenius FN; Seiler N
    Biochim Biophys Acta; 1987 Jan; 923(1):125-35. PubMed ID: 3099850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic approaches to the cellular functions of polyamines in mammals.
    Jänne J; Alhonen L; Pietilä M; Keinänen TA
    Eur J Biochem; 2004 Mar; 271(5):877-94. PubMed ID: 15009201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of polyamines in peach fruit development and storage.
    Liu J; Nada K; Pang X; Honda C; Kitashiba H; Moriguchi T
    Tree Physiol; 2006 Jun; 26(6):791-8. PubMed ID: 16510395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catabolism of polyamines.
    Seiler N
    Amino Acids; 2004 Jun; 26(3):217-33. PubMed ID: 15221502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The involvement of polyamines in the proliferation of cultured retinal pigment epithelial cells.
    Yanagihara N; Moriwaki M; Shiraki K; Miki T; Otani S
    Invest Ophthalmol Vis Sci; 1996 Sep; 37(10):1975-83. PubMed ID: 8814137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum.
    Alcázar R; Bitrián M; Bartels D; Koncz C; Altabella T; Tiburcio AF
    Plant Signal Behav; 2011 Feb; 6(2):243-50. PubMed ID: 21330782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyamine reutilization and turnover in brain.
    Seiler N; Bolkenius FN
    Neurochem Res; 1985 Apr; 10(4):529-44. PubMed ID: 3923382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of polyamine depletion and accumulation of decarboxylated S-adenosylmethionine in the inhibition of growth of SV-3T3 cells treated with alpha-difluoromethylornithine.
    Pegg AE
    Biochem J; 1984 Nov; 224(1):29-38. PubMed ID: 6439194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transgenic mice overexpressing ornithine and S-adenosylmethionine decarboxylases maintain a physiological polyamine homoeostasis in their tissues.
    Heljasvaara R; Veress I; Halmekytö M; Alhonen L; Jänne J; Laajala P; Pajunen A
    Biochem J; 1997 Apr; 323 ( Pt 2)(Pt 2):457-62. PubMed ID: 9163338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling of the polyamine and iron metabolism pathways in the regulation of proliferation: Mechanistic links to alterations in key polyamine biosynthetic and catabolic enzymes.
    Lane DJR; Bae DH; Siafakas AR; Suryo Rahmanto Y; Al-Akra L; Jansson PJ; Casero RA; Richardson DR
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt B):2793-2813. PubMed ID: 29777905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway.
    Kanika ND; Tar M; Tong Y; Kuppam DS; Melman A; Davies KP
    Am J Physiol Cell Physiol; 2009 Oct; 297(4):C916-27. PubMed ID: 19657052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytotoxicity of polyamines to Amoeba proteus: role of polyamine oxidase.
    Schenkel E; Dubois JG; Helson-Cambier M; Hanocq M
    Cell Biol Toxicol; 1996 Feb; 12(1):1-9. PubMed ID: 8882384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developmental aspects of polyamine interconversion in rat brain.
    Bolkenius FN; Seiler N
    Int J Dev Neurosci; 1986; 4(3):217-24. PubMed ID: 3455587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.