These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21208728)

  • 1. Measurement of the ultrasound attenuation and dispersion in whole human blood and its components from 0-70 MHz.
    Treeby BE; Zhang EZ; Thomas AS; Cox BT
    Ultrasound Med Biol; 2011 Feb; 37(2):289-300. PubMed ID: 21208728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the ultrasonic attenuation coefficient and its frequency dependence in a polymer gel dosimeter.
    Crescenti RA; Bamber JC; Partridge M; Bush NL; Webb S
    Phys Med Biol; 2007 Nov; 52(22):6747-59. PubMed ID: 17975295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz.
    Huang CC
    Phys Med Biol; 2010 Oct; 55(19):5801-15. PubMed ID: 20844333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation.
    Libgot-Callé R; Ossant F; Gruel Y; Lermusiaux P; Patat F
    Ultrasound Med Biol; 2008 Feb; 34(2):252-64. PubMed ID: 18077082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the sensitivity of an in vitro high frequency ultrasound device to monitor the coagulation process: study of the effects of heparin treatment in a murine model.
    Callé R; Rochefort GY; Desbuards N; Plag C; Antier D; Ossant F
    Ultrasound Med Biol; 2010 Feb; 36(2):295-305. PubMed ID: 20045589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls.
    Pichardo S; Sin VW; Hynynen K
    Phys Med Biol; 2011 Jan; 56(1):219-50. PubMed ID: 21149950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High frequency measurements of sound speed and attenuation in water-saturated glass-beads of varying size.
    Lee K; Park E; Seong W
    J Acoust Soc Am; 2009 Jul; 126(1):EL28-33. PubMed ID: 19603850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating myocardial attenuation from M-mode ultrasonic backscatter.
    Baldwin SL; Marutyan KR; Yang M; Wallace KD; Holland MR; Miller JG
    Ultrasound Med Biol; 2005 Apr; 31(4):477-84. PubMed ID: 15831326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of power-law attenuation coefficient and dispersion spectra in multi-wall carbon nanotube composites using Kramers-Kronig relations.
    Mobley J; Mack RA; Gladden JR; Mantena PR
    J Acoust Soc Am; 2009 Jul; 126(1):92-7. PubMed ID: 19603865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of broadband temperature-dependent ultrasonic attenuation and dispersion using photoacoustics.
    Treeby BE; Cox BT; Zhang EZ; Patch SK; Beard PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1666-76. PubMed ID: 19686982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband attenuation and nonlinear propagation in biological fluids: an experimental facility and measurements.
    Verma PK; Humphrey VF; Duck FA
    Ultrasound Med Biol; 2005 Dec; 31(12):1723-33. PubMed ID: 16344135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of speed of sound dispersion in soft tissues using a double frequency continuous wave method.
    Levy Y; Agnon Y; Azhari H
    Ultrasound Med Biol; 2006 Jul; 32(7):1065-71. PubMed ID: 16829320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz.
    Il Lee K; Joo Choi M
    J Acoust Soc Am; 2012 Jan; 131(1):EL67-73. PubMed ID: 22280732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High frequency ultrasonic backscatter from erythrocyte suspension.
    Kuo IY; Shung KK
    IEEE Trans Biomed Eng; 1994 Jan; 41(1):29-34. PubMed ID: 8200665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of acoustic properties of PVA-shelled ultrasound contrast agents: linear properties (part I).
    Grishenkov D; Pecorari C; Brismar TB; Paradossi G
    Ultrasound Med Biol; 2009 Jul; 35(7):1127-38. PubMed ID: 19427099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity dispersion of acoustic waves in cancellous bone.
    Droin P; Berger G; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):581-92. PubMed ID: 18244210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microprocessor-base system for ultrasonic tissue characterization.
    Bhagat PK; Kadaba MP; Gupta VN; Wu V
    Med Instrum; 1980; 14(4):220-4. PubMed ID: 7412654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ultrasound attenuation as a function of frequency in formalin fixed testicular tissue].
    Heynemann H; Richter KP; Haerting J; Holzhausen HJ; Baumann J; Jenderka K; Millner R; Langkopf B
    Z Exp Chir Transplant Kunstliche Organe; 1989; 22(3):184-9. PubMed ID: 2669396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of ultrasound pulse propagation in lossy media obeying a frequency power law.
    He P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):114-25. PubMed ID: 18244163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.