These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 21208959)
1. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Voigt CC; Lewanzik D Proc Biol Sci; 2011 Aug; 278(1716):2311-7. PubMed ID: 21208959 [TBL] [Abstract][Full Text] [Related]
2. Absorption of visible spectrum radiation by the wing membranes of living pteropodid bats. Thomson SC; Speakman JR J Comp Physiol B; 1999 Apr; 169(3):187-94. PubMed ID: 10335616 [TBL] [Abstract][Full Text] [Related]
3. Perch-hunting in insectivorous Rhinolophus bats is related to the high energy costs of manoeuvring in flight. Voigt CC; Schuller BM; Greif S; Siemers BM J Comp Physiol B; 2010 Oct; 180(7):1079-88. PubMed ID: 20354704 [TBL] [Abstract][Full Text] [Related]
4. Flight speed and body mass of nectar-feeding bats (Glossophaginae) during foraging. Winter Y J Exp Biol; 1999 Jul; 202(Pt 14):1917-30. PubMed ID: 10377273 [TBL] [Abstract][Full Text] [Related]
5. Thermoregulation during flight: body temperature and sensible heat transfer in free-ranging Brazilian free-tailed bats (Tadarida brasiliensis). Reichard JD; Fellows SR; Frank AJ; Kunz TH Physiol Biochem Zool; 2010; 83(6):885-97. PubMed ID: 21034204 [TBL] [Abstract][Full Text] [Related]
6. Rain increases the energy cost of bat flight. Voigt CC; Schneeberger K; Voigt-Heucke SL; Lewanzik D Biol Lett; 2011 Oct; 7(5):793-5. PubMed ID: 21543394 [TBL] [Abstract][Full Text] [Related]
7. Upstroke wing flexion and the inertial cost of bat flight. Riskin DK; Bergou A; Breuer KS; Swartz SM Proc Biol Sci; 2012 Aug; 279(1740):2945-50. PubMed ID: 22496186 [TBL] [Abstract][Full Text] [Related]
8. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds. Muijres FT; Johansson LC; Bowlin MS; Winter Y; Hedenström A PLoS One; 2012; 7(5):e37335. PubMed ID: 22624018 [TBL] [Abstract][Full Text] [Related]
14. 'No cost of echolocation for flying bats' revisited. Voigt CC; Lewanzik D J Comp Physiol B; 2012 Aug; 182(6):831-40. PubMed ID: 22526262 [TBL] [Abstract][Full Text] [Related]
15. Refueling while flying: foraging bats combust food rapidly and directly to power flight. Voigt CC; Sörgel K; Dechmann DK Ecology; 2010 Oct; 91(10):2908-17. PubMed ID: 21058551 [TBL] [Abstract][Full Text] [Related]
16. Wings as inertial appendages: how bats recover from aerial stumbles. Boerma DB; Breuer KS; Treskatis TL; Swartz SM J Exp Biol; 2019 Oct; 222(Pt 20):. PubMed ID: 31537651 [TBL] [Abstract][Full Text] [Related]
17. Analysis of a 180-degree U-turn maneuver executed by a hipposiderid bat. Windes P; Tafti DK; Müller R PLoS One; 2020; 15(11):e0241489. PubMed ID: 33141874 [TBL] [Abstract][Full Text] [Related]
18. A chemo-mechanical constitutive model for muscle activation in bat wing skins. Skulborstad A; Goulbourne NC J R Soc Interface; 2024 Jul; 21(216):20230593. PubMed ID: 38981517 [TBL] [Abstract][Full Text] [Related]
19. Flight metabolism in relation to speed in Chiroptera: testing the U-shape paradigm in the short-tailed fruit bat Carollia perspicillata. von Busse R; Swartz SM; Voigt CC J Exp Biol; 2013 Jun; 216(Pt 11):2073-80. PubMed ID: 23430989 [TBL] [Abstract][Full Text] [Related]
20. Direct Measurements of the Wing Kinematics of a Bat in Straight Flight. Singh SK; Zhang LB; Zhao JS J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33210129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]