These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21208981)

  • 21. The first crystal structure of an archaeal metallo-beta-lactamase superfamily protein; ST1585 from Sulfolobus tokodaii.
    Shimada A; Ishikawa H; Nakagawa N; Kuramitsu S; Masui R
    Proteins; 2010 Aug; 78(10):2399-402. PubMed ID: 20544975
    [No Abstract]   [Full Text] [Related]  

  • 22. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1.
    Hwa KY; Subramani B; Shen ST; Lee YM
    Enzyme Microb Technol; 2015 Sep; 77():14-20. PubMed ID: 26138395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad.
    Suzuki K; Hori A; Kawamoto K; Thangudu RR; Ishida T; Igarashi K; Samejima M; Yamada C; Arakawa T; Wakagi T; Koseki T; Fushinobu S
    Proteins; 2014 Oct; 82(10):2857-67. PubMed ID: 25066066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and biochemical characterization of bacterial YpgQ protein reveals a metal-dependent nucleotide pyrophosphohydrolase.
    Jeon YJ; Park SC; Song WS; Kim OH; Oh BC; Yoon SI
    J Struct Biol; 2016 Jul; 195(1):113-22. PubMed ID: 27062940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii--structural insights into enzymatic catalysis, thermostability, and dimerization.
    Cheung YY; Lam SY; Chu WK; Allen MD; Bycroft M; Wong KB
    Biochemistry; 2005 Mar; 44(12):4601-11. PubMed ID: 15779887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of the archaeosine synthase QueF-like-Insights into amidino transfer and tRNA recognition by the tunnel fold.
    Mei X; Alvarez J; Bon Ramos A; Samanta U; Iwata-Reuyl D; Swairjo MA
    Proteins; 2017 Jan; 85(1):103-116. PubMed ID: 27802572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J
    J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication.
    Chapados BR; Chai Q; Hosfield DJ; Qiu J; Shen B; Tainer JA
    J Mol Biol; 2001 Mar; 307(2):541-56. PubMed ID: 11254381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the active-site mechanism of tyrosyl-DNA phosphodiesterase I: a member of the phospholipase D superfamily.
    Gajewski S; Comeaux EQ; Jafari N; Bharatham N; Bashford D; White SW; van Waardenburg RC
    J Mol Biol; 2012 Jan; 415(4):741-58. PubMed ID: 22155078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional characterization of the phosphorylating D-glyceraldehyde 3-phosphate dehydrogenase from the archaeon Methanothermus fervidus by comparative molecular modelling and site-directed mutagenesis.
    Talfournier F; Colloc'h N; Mornon JP; Branlant G
    Eur J Biochem; 1999 Oct; 265(1):93-104. PubMed ID: 10491162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and mechanism of the 2',3' phosphatase component of the bacterial Pnkp-Hen1 RNA repair system.
    Wang LK; Smith P; Shuman S
    Nucleic Acids Res; 2013 Jun; 41(11):5864-73. PubMed ID: 23595150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The closed structure of an archaeal DNA ligase from Pyrococcus furiosus.
    Nishida H; Kiyonari S; Ishino Y; Morikawa K
    J Mol Biol; 2006 Jul; 360(5):956-67. PubMed ID: 16820169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unique active site formation in a novel galactose 1-phosphate uridylyltransferase from the hyperthermophilic archaeon Pyrobaculum aerophilum.
    Ohshida T; Hayashi J; Yoneda K; Ohshima T; Sakuraba H
    Proteins; 2020 May; 88(5):669-678. PubMed ID: 31693208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dimerisation induced formation of the active site and the identification of three metal sites in EAL-phosphodiesterases.
    Bellini D; Horrell S; Hutchin A; Phippen CW; Strange RW; Cai Y; Wagner A; Webb JS; Tews I; Walsh MA
    Sci Rep; 2017 Feb; 7():42166. PubMed ID: 28186120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution structure and DNA-binding properties of the phosphoesterase domain of DNA ligase D.
    Natarajan A; Dutta K; Temel DB; Nair PA; Shuman S; Ghose R
    Nucleic Acids Res; 2012 Mar; 40(5):2076-88. PubMed ID: 22084199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution structure and activation mechanism of ubiquitin-like small archaeal modifier proteins.
    Ranjan N; Damberger FF; Sutter M; Allain FH; Weber-Ban E
    J Mol Biol; 2011 Jan; 405(4):1040-55. PubMed ID: 21112336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of Catalytically Active Binuclear Center of Glycerophosphodiesterase: A Molecular Dynamics Study.
    Paul TJ; Schenk G; Prabhakar R
    J Phys Chem B; 2018 Jun; 122(22):5797-5808. PubMed ID: 29723477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of archaeal Rib7 and eubacterial RibG reductases in riboflavin biosynthesis: Substrate specificity and cofactor preference.
    Chen SC; Yen TM; Chang TH; Liaw SH
    Biochem Biophys Res Commun; 2018 Sep; 503(1):195-201. PubMed ID: 29864427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and mutational analysis of archaeal ATP-dependent RNA ligase identifies amino acids required for RNA binding and catalysis.
    Gu H; Yoshinari S; Ghosh R; Ignatochkina AV; Gollnick PD; Murakami KS; Ho CK
    Nucleic Acids Res; 2016 Mar; 44(5):2337-47. PubMed ID: 26896806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.