BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21209220)

  • 1. Selective suppression of plasticity in amygdala inputs from temporal association cortex by the external capsule.
    Morozov A; Sukato D; Ito W
    J Neurosci; 2011 Jan; 31(1):339-45. PubMed ID: 21209220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-dependent synaptic plasticity in the central nucleus of the amygdala.
    Samson RD; Paré D
    J Neurosci; 2005 Feb; 25(7):1847-55. PubMed ID: 15716421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation.
    Shen KZ; Zhu ZT; Munhall A; Johnson SW
    Synapse; 2003 Dec; 50(4):314-9. PubMed ID: 14556236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons.
    Leão RN; Mikulovic S; Leão KE; Munguba H; Gezelius H; Enjin A; Patra K; Eriksson A; Loew LM; Tort AB; Kullander K
    Nat Neurosci; 2012 Nov; 15(11):1524-30. PubMed ID: 23042082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Putative cortical and thalamic inputs elicit convergent excitation in a population of GABAergic interneurons of the lateral amygdala.
    Szinyei C; Heinbockel T; Montagne J; Pape HC
    J Neurosci; 2000 Dec; 20(23):8909-15. PubMed ID: 11102501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of neuronal input transformations by tunable dendritic inhibition.
    Lovett-Barron M; Turi GF; Kaifosh P; Lee PH; Bolze F; Sun XH; Nicoud JF; Zemelman BV; Sternson SM; Losonczy A
    Nat Neurosci; 2012 Jan; 15(3):423-30, S1-3. PubMed ID: 22246433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A circuit model for saccadic suppression in the superior colliculus.
    Phongphanphanee P; Mizuno F; Lee PH; Yanagawa Y; Isa T; Hall WC
    J Neurosci; 2011 Feb; 31(6):1949-54. PubMed ID: 21307233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges.
    Lopantsev V; Both M; Draguhn A
    Eur J Neurosci; 2009 Mar; 29(6):1153-64. PubMed ID: 19302151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala.
    Bauer EP; LeDoux JE
    J Neurosci; 2004 Oct; 24(43):9507-12. PubMed ID: 15509737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex.
    Liauw J; Wu LJ; Zhuo M
    J Neurophysiol; 2005 Jul; 94(1):878-82. PubMed ID: 15985698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noradrenergic excitation of a subpopulation of GABAergic cells in the basolateral amygdala via both activation of nonselective cationic conductance and suppression of resting K+ conductance: a study using glutamate decarboxylase 67-green fluorescent protein knock-in mice.
    Kaneko K; Tamamaki N; Owada H; Kakizaki T; Kume N; Totsuka M; Yamamoto T; Yawo H; Yagi T; Obata K; Yanagawa Y
    Neuroscience; 2008 Dec; 157(4):781-97. PubMed ID: 18950687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An inhibitory pathway controlling the gating mechanism of the mouse lateral amygdala revealed by voltage-sensitive dye imaging.
    Fujieda T; Koganezawa N; Ide Y; Shirao T; Sekino Y
    Neurosci Lett; 2015 Mar; 590():126-31. PubMed ID: 25646995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic Organization of Olfactory Inputs to Medial Amygdala Neurons.
    Keshavarzi S; Power JM; Albers EH; Sullivan RK; Sah P
    J Neurosci; 2015 Sep; 35(38):13020-8. PubMed ID: 26400933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience-dependent intrinsic plasticity in interneurons of barrel cortex layer IV.
    Sun QQ
    J Neurophysiol; 2009 Nov; 102(5):2955-73. PubMed ID: 19741102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala.
    Weisskopf MG; LeDoux JE
    J Neurophysiol; 1999 Feb; 81(2):930-4. PubMed ID: 10036290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeostatic regulation of synaptic excitability: tonic GABA(A) receptor currents replace I(h) in cortical pyramidal neurons of HCN1 knock-out mice.
    Chen X; Shu S; Schwartz LC; Sun C; Kapur J; Bayliss DA
    J Neurosci; 2010 Feb; 30(7):2611-22. PubMed ID: 20164346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergence between thalamic and cortical inputs to lateral amygdala during juvenile-adult transition in mice.
    Pan BX; Ito W; Morozov A
    Biol Psychiatry; 2009 Nov; 66(10):964-71. PubMed ID: 19699473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spatially structured network of inhibitory and excitatory connections directs impulse traffic within the lateral amygdala.
    Samson RD; Paré D
    Neuroscience; 2006 Sep; 141(3):1599-609. PubMed ID: 16753264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of inhibitory synaptic network interactions in the lateral amygdala upon fear conditioning in mice.
    Szinyei C; Narayanan RT; Pape HC
    Eur J Neurosci; 2007 Feb; 25(4):1205-11. PubMed ID: 17331216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-derived neurotrophic factor acutely depresses excitatory synaptic transmission to GABAergic neurons in visual cortical slices.
    Jiang B; Kitamura A; Yasuda H; Sohya K; Maruyama A; Yanagawa Y; Obata K; Tsumoto T
    Eur J Neurosci; 2004 Aug; 20(3):709-18. PubMed ID: 15255981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.