These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 21209328)
1. Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase. Shi R; McDonald L; Cui Q; Matte A; Cygler M; Ekiel I Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1302-7. PubMed ID: 21209328 [TBL] [Abstract][Full Text] [Related]
2. A mechanism of covalent substrate binding in the x-ray structure of subunit K of the Escherichia coli dihydroxyacetone kinase. Siebold C; García-Alles LF; Erni B; Baumann U Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8188-92. PubMed ID: 12813127 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the nucleotide-binding subunit DhaL of the Escherichia coli dihydroxyacetone kinase. Oberholzer AE; Schneider P; Baumann U; Erni B J Mol Biol; 2006 Jun; 359(3):539-45. PubMed ID: 16647083 [TBL] [Abstract][Full Text] [Related]
10. Theoretical Study of the Phosphoryl Transfer Reaction from ATP to Dha Catalyzed by DhaK from Escherichia coli. Bordes I; Castillo R; Moliner V J Phys Chem B; 2017 Sep; 121(38):8878-8892. PubMed ID: 28850238 [TBL] [Abstract][Full Text] [Related]
11. Structural and biochemical analyses reveal insights into covalent flavinylation of the Starbird CA; Maklashina E; Sharma P; Qualls-Histed S; Cecchini G; Iverson TM J Biol Chem; 2017 Aug; 292(31):12921-12933. PubMed ID: 28615448 [TBL] [Abstract][Full Text] [Related]
12. From ATP as substrate to ADP as coenzyme: functional evolution of the nucleotide binding subunit of dihydroxyacetone kinases. Bächler C; Flükiger-Brühwiler K; Schneider P; Bähler P; Erni B J Biol Chem; 2005 May; 280(18):18321-5. PubMed ID: 15753087 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of the Citrobacter freundii dihydroxyacetone kinase reveals an eight-stranded alpha-helical barrel ATP-binding domain. Siebold C; Arnold I; Garcia-Alles LF; Baumann U; Erni B J Biol Chem; 2003 Nov; 278(48):48236-44. PubMed ID: 12966101 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site. Szyk A; Maurizi MR J Struct Biol; 2006 Oct; 156(1):165-74. PubMed ID: 16682229 [TBL] [Abstract][Full Text] [Related]
15. Structure of an ancestral ADP-dependent kinase with fructose-6P reveals key residues for binding, catalysis, and ligand-induced conformational changes. Muñoz SM; Castro-Fernandez V; Guixé V J Biol Chem; 2021; 296():100219. PubMed ID: 33839685 [TBL] [Abstract][Full Text] [Related]
16. Solution structure of the IIAChitobiose-IIBChitobiose complex of the N,N'-diacetylchitobiose branch of the Escherichia coli phosphotransferase system. Jung YS; Cai M; Clore GM J Biol Chem; 2010 Feb; 285(6):4173-4184. PubMed ID: 19959833 [TBL] [Abstract][Full Text] [Related]
17. The structure of the pantothenate kinase.ADP.pantothenate ternary complex reveals the relationship between the binding sites for substrate, allosteric regulator, and antimetabolites. Ivey RA; Zhang YM; Virga KG; Hevener K; Lee RE; Rock CO; Jackowski S; Park HW J Biol Chem; 2004 Aug; 279(34):35622-9. PubMed ID: 15136582 [TBL] [Abstract][Full Text] [Related]
18. Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography. Kraft L; Sprenger GA; Lindqvist Y J Mol Biol; 2002 May; 318(4):1057-69. PubMed ID: 12054802 [TBL] [Abstract][Full Text] [Related]
19. Structure and reaction mechanism of L-rhamnulose kinase from Escherichia coli. Grueninger D; Schulz GE J Mol Biol; 2006 Jun; 359(3):787-97. PubMed ID: 16674975 [TBL] [Abstract][Full Text] [Related]
20. Novel listerial glycerol dehydrogenase- and phosphoenolpyruvate-dependent dihydroxyacetone kinase system connected to the pentose phosphate pathway. Monniot C; Zébré AC; Aké FM; Deutscher J; Milohanic E J Bacteriol; 2012 Sep; 194(18):4972-82. PubMed ID: 22773791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]