BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21209686)

  • 1. Nanomembrane transfer process for intricate photonic device applications.
    Zablocki MJ; Sharkawy A; Ebil O; Prather DW
    Opt Lett; 2011 Jan; 36(1):58-60. PubMed ID: 21209686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration.
    Xu X; Subbaraman H; Hosseini A; Lin CY; Kwong D; Chen RT
    Opt Lett; 2012 Mar; 37(6):1020-2. PubMed ID: 22446210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible single-crystal silicon nanomembrane photonic crystal cavity.
    Xu X; Subbaraman H; Chakravarty S; Hosseini A; Covey J; Yu Y; Kwong D; Zhang Y; Lai WC; Zou Y; Lu N; Chen RT
    ACS Nano; 2014 Dec; 8(12):12265-71. PubMed ID: 25409282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates.
    Ghaffari A; Hosseini A; Xu X; Kwong D; Subbaraman H; Chen RT
    Opt Express; 2010 Sep; 18(19):20086-95. PubMed ID: 20940898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-free self-assembly approach toward large-area nanomembranes.
    Wang F; Seo JH; Ma Z; Wang X
    ACS Nano; 2012 Mar; 6(3):2602-9. PubMed ID: 22299624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect-free single-crystal SiGe: a new material from nanomembrane strain engineering.
    Paskiewicz DM; Tanto B; Savage DE; Lagally MG
    ACS Nano; 2011 Jul; 5(7):5814-22. PubMed ID: 21650206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bendable Photodetector on Fibers Wrapped with Flexible Ultrathin Single Crystalline Silicon Nanomembranes.
    Song E; Guo Q; Huang G; Jia B; Mei Y
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12171-12175. PubMed ID: 28351140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices.
    Fabre B
    Acc Chem Res; 2010 Dec; 43(12):1509-18. PubMed ID: 20949977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single crystal-like Si patterns for photonic crystal color filters.
    Cho EH; Kim HS; Sohn JS; Moon CY; Park NC; Park YP
    Nanotechnology; 2011 Apr; 22(13):135301. PubMed ID: 21343641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional optical photonic crystal with designed point defects.
    Qi M; Lidorikis E; Rakich PT; Johnson SG; Joannopoulos JD; Ippen EP; Smith HI
    Nature; 2004 Jun; 429(6991):538-42. PubMed ID: 15175746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast and Chemically Stable Transfer of Au Nanomembrane Using a Water-Soluble NaCl Sacrificial Layer for Flexible Solar Cells.
    Dong WJ; Kim S; Park JY; Yu HK; Lee JL
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30477-30483. PubMed ID: 31393691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures.
    Zhang X; Liu H; Feng S
    Nanotechnology; 2009 Oct; 20(42):425303. PubMed ID: 19779226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetry in strain engineering of nanomembranes: making new strained materials.
    Paskiewicz DM; Scott SA; Savage DE; Celler GK; Lagally MG
    ACS Nano; 2011 Jul; 5(7):5532-42. PubMed ID: 21682324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High speed silicon optical modulator with self aligned fabrication process.
    Thomson DJ; Gardes FY; Reed GT; Milesi F; Fedeli JM
    Opt Express; 2010 Aug; 18(18):19064-9. PubMed ID: 20940800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding.
    Yang F; Yen G; Cunningham BT
    Opt Express; 2010 May; 18(11):11846-58. PubMed ID: 20589046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broad-band optical parametric gain on a silicon photonic chip.
    Foster MA; Turner AC; Sharping JE; Schmidt BS; Lipson M; Gaeta AL
    Nature; 2006 Jun; 441(7096):960-3. PubMed ID: 16791190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ultrahigh vacuum complementary metal oxide silicon compatible nonlithographic system to fabricate nanoparticle-based devices.
    Banerjee A; Das B
    Rev Sci Instrum; 2008 Mar; 79(3):033910. PubMed ID: 18377028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterning organic single-crystal transistor arrays.
    Briseno AL; Mannsfeld SC; Ling MM; Liu S; Tseng RJ; Reese C; Roberts ME; Yang Y; Wudl F; Bao Z
    Nature; 2006 Dec; 444(7121):913-7. PubMed ID: 17167482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of functional nanowire devices on unconventional substrates using strain-release assembly.
    Durham JW; Zhu Y
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):256-61. PubMed ID: 23249184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.