These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 21209839)

  • 1. Prediction and analysis of protein hydroxyproline and hydroxylysine.
    Hu LL; Niu S; Huang T; Wang K; Shi XH; Cai YD
    PLoS One; 2010 Dec; 5(12):e15917. PubMed ID: 21209839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OH-PRED: prediction of protein hydroxylation sites by incorporating adapted normal distribution bi-profile Bayes feature extraction and physicochemical properties of amino acids.
    Jia CZ; He WY; Yao YH
    J Biomol Struct Dyn; 2017 Mar; 35(4):829-835. PubMed ID: 26957000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Hybrid Deep Learning Model for Predicting Protein Hydroxylation Sites.
    Long H; Liao B; Xu X; Yang J
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30231550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC.
    Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC
    Oncotarget; 2016 Jul; 7(28):44310-44321. PubMed ID: 27322424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PredHydroxy: computational prediction of protein hydroxylation site locations based on the primary structure.
    Shi SP; Chen X; Xu HD; Qiu JD
    Mol Biosyst; 2015 Mar; 11(3):819-25. PubMed ID: 25534958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition.
    Xu Y; Wen X; Shao XJ; Deng NY; Chou KC
    Int J Mol Sci; 2014 May; 15(5):7594-610. PubMed ID: 24857907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HydPred: a novel method for the identification of protein hydroxylation sites that reveals new insights into human inherited disease.
    Li S; Lu J; Li J; Chen X; Yao X; Xi L
    Mol Biosyst; 2016 Feb; 12(2):490-8. PubMed ID: 26661679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features.
    Weng SL; Huang KY; Kaunang FJ; Huang CH; Kao HJ; Chang TH; Wang HY; Lu JJ; Lee TY
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):66. PubMed ID: 28361707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular-orbital study of hydroxylation of collagenous proline and lysine.
    Zahradník R; Hobza P; Hurych J
    Biochim Biophys Acta; 1971 Dec; 251(3):314-9. PubMed ID: 11452871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RF-Hydroxysite: a random forest based predictor for hydroxylation sites.
    Ismail HD; Newman RH; Kc DB
    Mol Biosyst; 2016 Jul; 12(8):2427-35. PubMed ID: 27292874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iHyd-LysSite (EPSV): Identifying Hydroxylysine Sites in Protein Using Statistical Formulation by Extracting Enhanced Position and Sequence Variant Feature Technique.
    Mahmood MK; Ehsan A; Khan YD; Chou KC
    Curr Genomics; 2020 Nov; 21(7):536-545. PubMed ID: 33214770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties.
    Huang HL; Lin IC; Liou YF; Tsai CT; Hsu KT; Huang WL; Ho SJ; Ho SY
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S47. PubMed ID: 21342579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information.
    Cheng CW; Su EC; Hwang JK; Sung TY; Hsu WL
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S6. PubMed ID: 19091029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of hydroxyproline isomers and hydroxylysine by reversed-phase HPLC and mass spectrometry.
    Langrock T; García-Villar N; Hoffmann R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Mar; 847(2):282-8. PubMed ID: 17085085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of protein amino acids.
    Towe KM
    Science; 2003 May; 300(5624):1370-1. PubMed ID: 12775820
    [No Abstract]   [Full Text] [Related]  

  • 17. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real value prediction of protein solvent accessibility using enhanced PSSM features.
    Chang DT; Huang HY; Syu YT; Wu CP
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S12. PubMed ID: 19091011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction.
    Dehzangi A; López Y; Lal SP; Taherzadeh G; Michaelson J; Sattar A; Tsunoda T; Sharma A
    J Theor Biol; 2017 Jul; 425():97-102. PubMed ID: 28483566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites.
    Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.