These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21209956)

  • 21. Turbulence explains the accelerations of an eagle in natural flight.
    Laurent KM; Fogg B; Ginsburg T; Halverson C; Lanzone MJ; Miller TA; Winkler DW; Bewley GP
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of vision in odor-plume tracking by walking and flying insects.
    Willis MA; Avondet JL; Zheng E
    J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent insights from radar studies of insect flight.
    Chapman JW; Drake VA; Reynolds DR
    Annu Rev Entomol; 2011; 56():337-56. PubMed ID: 21133761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A radar study of emigratory flight and layer formation by insects at dawn over southern Britain.
    Reynolds DR; Smith AD; Chapman JW
    Bull Entomol Res; 2008 Feb; 98(1):35-52. PubMed ID: 18076783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rolling with the flow: bumblebees flying in unsteady wakes.
    Ravi S; Crall JD; Fisher A; Combes SA
    J Exp Biol; 2013 Nov; 216(Pt 22):4299-309. PubMed ID: 24031057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Massive seasonal high-altitude migrations of nocturnal insects above the agricultural plains of East China.
    Huang J; Feng H; Drake VA; Reynolds DR; Gao B; Chen F; Zhang G; Zhu J; Gao Y; Zhai B; Li G; Tian C; Huang B; Hu G; Chapman JW
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2317646121. PubMed ID: 38648486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of vertical-looking radar to continuously monitor the insect fauna flying at altitude over southern England.
    Smith AD; Reynolds DR; Riley JR
    Bull Entomol Res; 2000 Jun; 90(3):265-77. PubMed ID: 10996867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hummingbird flight stability and control in freestream turbulent winds.
    Ravi S; Crall JD; McNeilly L; Gagliardi SF; Biewener AA; Combes SA
    J Exp Biol; 2015 May; 218(Pt 9):1444-52. PubMed ID: 25767146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Where in the air? Aerial habitat use of nocturnally migrating birds.
    Horton KG; Van Doren BM; Stepanian PM; Farnsworth A; Kelly JF
    Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27881761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Urban areas affect flight altitudes of nocturnally migrating birds.
    Cabrera-Cruz SA; Smolinsky JA; McCarthy KP; Buler JJ
    J Anim Ecol; 2019 Dec; 88(12):1873-1887. PubMed ID: 31330569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus.
    Bäckman J; Alerstam T
    Proc Biol Sci; 2001 May; 268(1471):1081-7. PubMed ID: 11375093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird.
    Schmaljohann H; Naef-Daenzer B
    J Anim Ecol; 2011 Nov; 80(6):1115-22. PubMed ID: 21615404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimating fine-scale changes in turbulence using the movements of a flapping flier.
    Lempidakis E; Ross AN; Quetting M; Garde B; Wikelski M; Shepard ELC
    J R Soc Interface; 2022 Nov; 19(196):20220577. PubMed ID: 36349445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode.
    Sapir N; Horvitz N; Wikelski M; Avissar R; Mahrer Y; Nathan R
    Proc Biol Sci; 2011 Nov; 278(1723):3380-6. PubMed ID: 21471116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.
    Dokter AM; Shamoun-Baranes J; Kemp MU; Tijm S; Holleman I
    PLoS One; 2013; 8(1):e52300. PubMed ID: 23300969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting spatial patterns of eagle migration using a mesoscale atmospheric model: a case study associated with a mountain-ridge wind development.
    Ainslie B; Alexander N; Johnston N; Bradley J; Pomeroy AC; Jackson PL; Otter KA
    Int J Biometeorol; 2014 Jan; 58(1):17-30. PubMed ID: 23325041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Migration of the painted lady butterfly, Vanessa cardui, to north-eastern Spain is aided by African wind currents.
    Stefanescu C; Alarcón M; Avila A
    J Anim Ecol; 2007 Sep; 76(5):888-98. PubMed ID: 17714267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Harmonic oscillatory orientation relative to the wind in nocturnal roosting flights of the swift Apus apus.
    Bäckman J; Alerstam T
    J Exp Biol; 2002 Apr; 205(Pt 7):905-10. PubMed ID: 11916987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern USA.
    Farnsworth A; Van DOREN BM; Hochachka WM; Sheldon D; Winner K; Irvine J; Geevarghese J; Kelling S
    Ecol Appl; 2016 Apr; 26(3):752-70. PubMed ID: 27411248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds.
    Bowlin MS; Wikelski M
    PLoS One; 2008 May; 3(5):e2154. PubMed ID: 18478072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.