These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21210025)

  • 1. The stabilization of charged states at phenazine-like units in polyaniline under p-doping: an in situ ATR-FTIR spectroelectrochemical study.
    Kellenberger A; Dmitrieva E; Dunsch L
    Phys Chem Chem Phys; 2011 Feb; 13(8):3411-20. PubMed ID: 21210025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of phenazine structure on polaron formation in polyaniline: in situ electron spin resonance-ultraviolet/visible-near-infrared spectroelectrochemical study.
    Dmitrieva E; Harima Y; Dunsch L
    J Phys Chem B; 2009 Dec; 113(50):16131-41. PubMed ID: 19928869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure dependence of charged states in "linear" polyaniline as studied by in situ ATR-FTIR spectroelectrochemistry.
    Kellenberger A; Dmitrieva E; Dunsch L
    J Phys Chem B; 2012 Apr; 116(14):4377-85. PubMed ID: 22409155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How linear is "linear" polyaniline?
    Dmitrieva E; Dunsch L
    J Phys Chem B; 2011 May; 115(20):6401-11. PubMed ID: 21539321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ ESR/UV-vis-NIR and ATR-FTIR spectroelectrochemical studies on the p-doping of copolymers of 3-methylthiophene and 3-hexylthiophene.
    Cházaro-Ruiz LF; Kellenberger A; Dunsch L
    J Phys Chem B; 2009 Feb; 113(8):2310-6. PubMed ID: 19191716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic study on the structural differences of thermally induced cross-linking segments in emeraldine salt and base forms of polyaniline.
    Nobrega MM; Silva CH; Constantino VR; Temperini ML
    J Phys Chem B; 2012 Dec; 116(48):14191-200. PubMed ID: 23145481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ ESR-UV-Vis-NIR spectroelectrochemical study of the p-doping of poly[2-(3-thienyl)ethyl acetate] and its hydrolyzed derivatives.
    Cházaro-Ruiz LF; Kellenberger A; Jähne E; Adler HJ; Khandelwal T; Dunsch L
    Phys Chem Chem Phys; 2009 Aug; 11(30):6505-13. PubMed ID: 19809683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyaniline/layered zirconium phosphate nanocomposites: secondary-like doped polyaniline obtained by the layer-by-layer technique.
    Izumi CM; Constantino VR; Temperini ML
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1782-9. PubMed ID: 18572578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation.
    Planes GA; Rodríguez JL; Miras MC; García G; Pastor E; Barbero CA
    Phys Chem Chem Phys; 2010 Sep; 12(35):10584-93. PubMed ID: 20625574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman and in situ FTIR-ATR characterization of polyazulene films and its derivate.
    Meana-Esteban B; Lete C; Kvarnström C; Ivaska A
    J Phys Chem B; 2006 Nov; 110(46):23343-50. PubMed ID: 17107185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface and charge transport characterization of polyaniline-cellulose acetate composite membranes.
    Qaiser AA; Hyland MM; Patterson DA
    J Phys Chem B; 2011 Feb; 115(7):1652-61. PubMed ID: 21287993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ FTIR spectroelectrochemical characterization of n- and p-dopable phenyl-substituted polythiophenes.
    Yohannes T; Lattante S; Neugebauer H; Sariciftci NS; Andersson M
    Phys Chem Chem Phys; 2009 Aug; 11(29):6283-8. PubMed ID: 19606341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vesicles as soft templates for the enzymatic polymerization of aniline.
    Guo Z; Rüegger H; Kissner R; Ishikawa T; Willeke M; Walde P
    Langmuir; 2009 Oct; 25(19):11390-405. PubMed ID: 19670900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of
    Bláha M; Marek F; Morávková Z; Svoboda J; Brus J; Dybal J; Prokeš J; Varga M; Stejskal J
    ACS Omega; 2019 Apr; 4(4):7128-7139. PubMed ID: 31459822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly-p-phenylene phosphine/polyaniline alternating copolymers: electronic delocalization through phosphorus.
    Jin Z; Lucht BL
    J Am Chem Soc; 2005 Apr; 127(15):5586-95. PubMed ID: 15826197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of polyaniline nanotubes: the oxidation of aniline in water.
    Trchová M; Sedĕnková I; Konyushenko EN; Stejskal J; Holler P; Cirić-Marjanović G
    J Phys Chem B; 2006 May; 110(19):9461-8. PubMed ID: 16686491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and vibrational characterization of polyaniline nanofibers prepared from interfacial polymerization.
    do Nascimento GM; Kobata PY; Temperini ML
    J Phys Chem B; 2008 Sep; 112(37):11551-7. PubMed ID: 18717555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic characterization of polyaniline formed by using copper(II) in homogeneous and MCM-41 molecular sieve media.
    Izumi CM; Constantino VR; Temperini ML
    J Phys Chem B; 2005 Dec; 109(47):22131-40. PubMed ID: 16853880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymerization of aniline on polyaniline membranes.
    Blinova NV; Stejskal J; Trchová M; Cirić-Marjanović G; Sapurina I
    J Phys Chem B; 2007 Mar; 111(10):2440-8. PubMed ID: 17311453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doping-induced conductivity transitions in molecular layers of polyaniline: detailed structural study.
    Cristofolini L; Fontana MP; Konovalov O; Berzina T; Smerieri A
    Langmuir; 2009 Nov; 25(21):12429-34. PubMed ID: 19817348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.