These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 212101)

  • 21. Labeling of thiols involved in the activity of complex V of the mitochondrial oxidative phosphorylation system.
    Godinot C; Gautheron DC; Galante Y; Hatefi Y
    J Biol Chem; 1981 Jul; 256(13):6776-82. PubMed ID: 6453870
    [No Abstract]   [Full Text] [Related]  

  • 22. Adenine nucleotide degradation by the obligate intracellular bacterium Rickettsia typhi.
    Williams JC
    Infect Immun; 1980 Apr; 28(1):74-81. PubMed ID: 6247288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum.
    Doddema HJ; Hutten TJ; van der Drift C; Vogels GD
    J Bacteriol; 1978 Oct; 136(1):19-23. PubMed ID: 30747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the natural ATPase inhibitor on the binding of adenine nucleotides and inorganic phosphate to mitochondrial F1-ATPase.
    Klein G; Lunardi J; Vignais PV
    Biochim Biophys Acta; 1981 Jul; 636(2):185-92. PubMed ID: 6456765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 31p NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain.
    Shoubridge EA; Briggs RW; Radda GK
    FEBS Lett; 1982 Apr; 140(2):289-92. PubMed ID: 6282642
    [No Abstract]   [Full Text] [Related]  

  • 26. Interactions between the mitochondrial adenosinetriphosphatase and periodate-oxidized adenosine 5'-triphosphate, an affinity label for adenosine 5'-triphosphate binding sites.
    Lowe PN; Beechey RB
    Biochemistry; 1982 Aug; 21(17):4073-82. PubMed ID: 6215060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold.
    Walker JE; Saraste M; Runswick MJ; Gay NJ
    EMBO J; 1982; 1(8):945-51. PubMed ID: 6329717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of morphine in vitro on the oxidative phosphorylation in rat liver mitochondria].
    Gegenava GP; Chistiakov VV
    Biull Eksp Biol Med; 1975 Oct; 80(10):77-9. PubMed ID: 179644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel approaches towards characterization of the high-affinity nucleotide binding sites on mitochondrial F1-ATPase by the fluorescence probes 3'-O-(1-naphthoyl)adenosine di- and triphosphate.
    Weber J; Rögner M; Schäfer G
    Biochim Biophys Acta; 1987 Jun; 892(1):30-41. PubMed ID: 2883993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The isolation of a low molecular weight protein involved in the energy transduction from complex I to the ATP synthase.
    Kiehl R; Bäuerlein E
    FEBS Lett; 1977 Nov; 83(2):311-5. PubMed ID: 201496
    [No Abstract]   [Full Text] [Related]  

  • 32. Rat heart mitochondria release adenosine.
    Bukoski RD; Sparks HV; Mela LM
    Biochem Biophys Res Commun; 1983 Jun; 113(3):990-5. PubMed ID: 6223636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Participation of N1-oxide derivatives of adenine nucleotides in the phosphotransferase activity of liver mitochondria.
    Jebeleanu G; Ty NG; Mantsch HH; Bârzu O; Niac G; Abrudan I
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4630-4. PubMed ID: 4373722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probes of catalytic site cooperativity during catalysis by the chloroplast adenosine triphosphate and the adenosine triphosphate synthase.
    Kohlbrenner WE; Boyer PD
    J Biol Chem; 1983 Sep; 258(18):10881-6. PubMed ID: 6309819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tight binding of adenine nucleotides to beef-heart mitochondrial ATPase.
    Harris DA; Rosing J; van de Stadt RJ; Slater EC
    Biochim Biophys Acta; 1973 Aug; 314(2):149-53. PubMed ID: 4270535
    [No Abstract]   [Full Text] [Related]  

  • 36. Chemical reaction mechanism for ATP synthesis and hydrolysis by ATP synthetase.
    Repke KR; Dittrich F; Schön R
    Acta Biol Med Ger; 1974; 33(1):K39-47. PubMed ID: 4278734
    [No Abstract]   [Full Text] [Related]  

  • 37. Defined dimensional changes in enzyme cofactors: fluorescent "stretched-out" analogs of adenine nucleotides.
    Scopes DI; Barrio JR; Leonard NJ
    Science; 1977 Jan; 195(4275):296-8. PubMed ID: 188137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymorphism and conformational dynamics of F1-ATPases from bacterial membranes. A model for the regulation of these enzymes on the basis of molecular plasticity.
    Muñoz E
    Biochim Biophys Acta; 1982 May; 650(4):233-65. PubMed ID: 6178434
    [No Abstract]   [Full Text] [Related]  

  • 39. Photoaffinity labeling of the adenine nucleotide carrier in heart and yeast mitochondria by an arylazido ADP analog.
    Lauquin GJ; Brandolin G; Lunardi J; Vignais PV
    Biochim Biophys Acta; 1978 Jan; 501(1):10-9. PubMed ID: 339953
    [No Abstract]   [Full Text] [Related]  

  • 40. Conformational changes in cytochrome aa3 and ATP synthetase of the mitochondrial membrane and their role in mitochondrial energy transduction.
    Wikström MK; Saari HT
    Mol Cell Biochem; 1976 Mar; 11(1):17-33. PubMed ID: 5667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.