These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21210518)

  • 41. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends.
    Joo YS; Cha JR; Gong MS
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():426-435. PubMed ID: 30033273
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioresorbable poly(ester-ether urethane)s from L-lysine diisocyanate and triblock copolymers with different hydrophilic character.
    Abraham GA; Marcos-Fernández A; Román JS
    J Biomed Mater Res A; 2006 Mar; 76(4):729-36. PubMed ID: 16317720
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of a slowly degrading biodegradable polyester-urethane for tissue engineering scaffolds.
    Henry JA; Simonet M; Pandit A; Neuenschwander P
    J Biomed Mater Res A; 2007 Sep; 82(3):669-79. PubMed ID: 17323319
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of highly elastic biodegradable poly(urethane urea).
    Asplund JO; Bowden T; Mathisen T; Hilborn J
    Biomacromolecules; 2007 Mar; 8(3):905-11. PubMed ID: 17263577
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of the macromolecular architecture of biodegradable polyurethanes on the controlled delivery of ocular drugs.
    da Silva GR; da Silva Cunha A; Ayres E; Oréfice RL
    J Mater Sci Mater Med; 2009 Feb; 20(2):481-7. PubMed ID: 18853235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Shape-memory properties and degradation behavior of multifunctional electro-spun scaffolds.
    Kratz K; Habermann R; Becker T; Richau K; Lendlein A
    Int J Artif Organs; 2011 Feb; 34(2):225-30. PubMed ID: 21374579
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone).
    Qiu H; Li D; Chen X; Fan K; Ou W; Chen KC; Xu K
    J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of soft segment chemistry on the biostability of segmented polyurethanes. II. In vitro hydrolytic degradation and lipid sorption.
    Takahara A; Hergenrother RW; Coury AJ; Cooper SL
    J Biomed Mater Res; 1992 Jun; 26(6):801-18. PubMed ID: 1527102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility.
    Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M
    J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biodegradable polyurethanes: biodegradable low adherence films for the prevention of adhesions after surgery.
    Rehman IU
    J Biomater Appl; 1996 Oct; 11(2):182-257. PubMed ID: 8913850
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes.
    Takahara A; Okkema AZ; Cooper SL; Coury AJ
    Biomaterials; 1991 Apr; 12(3):324-34. PubMed ID: 1854901
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of polymer nanosurface roughness and submicron pores in improving bladder urothelial cell density and inhibiting calcium oxalate stone formation.
    Chun YW; Khang D; Haberstroh KM; Webster TJ
    Nanotechnology; 2009 Feb; 20(8):085104. PubMed ID: 19417440
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Platelet adhesion and human umbilical vein endothelial cell cytocompatibility of biodegradable segmented polyurethanes prepared with 4,4'-methylene bis(cyclohexyl isocyanate), poly(caprolactone) diol and butanediol or dithioerythritol as chain extenders.
    Chan-Chan LH; Vargas-Coronado RF; Cervantes-Uc JM; Cauich-Rodríguez JV; Rath R; Phelps EA; García AJ; San Román Del Barrio J; Parra J; Merhi Y; Tabrizian M
    J Biomater Appl; 2013 Aug; 28(2):270-7. PubMed ID: 22684514
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polyurethanes as supports for human retinal pigment epithelium cell growth.
    da Silva GR; Junior Ada S; Saliba JB; Berdugo M; Goldenberg BT; Naud MC; Ayres E; Oréfice RL; Cohen FB
    Int J Artif Organs; 2011 Feb; 34(2):198-209. PubMed ID: 21374562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of Shape-Memory Polyurethanes: Combined Experimental and Simulation Studies.
    Rolińska K; Mazurek-Budzyńska M; Parzuchowski PG; Wołosz D; Balk M; Gorący K; El Fray M; Polanowski P; Sikorski A
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806067
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shape-memory bionanocomposites based on chitin nanocrystals and thermoplastic polyurethane with a highly crystalline soft segment.
    Saralegi A; Fernandes SC; Alonso-Varona A; Palomares T; Foster EJ; Weder C; Eceiza A; Corcuera MA
    Biomacromolecules; 2013 Dec; 14(12):4475-82. PubMed ID: 24187934
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering.
    Vieira T; Carvalho Silva J; Botelho do Rego AM; Borges JP; Henriques C
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109819. PubMed ID: 31349414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.