These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21210579)

  • 1. Performance analysis of millennium vitreous enhancer™ system.
    Matsuoka N; Teixeira A; Lue JC; Fang S; Kerns R; Bhadri P; Humayun M
    Ophthalmic Surg Lasers Imaging; 2011; 42(2):162-7. PubMed ID: 21210579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance analysis of ultrahigh-speed vitreous cutter system.
    Ribeiro RM; Teixeira AG; Diniz B; Fernandes RB; Zhong Y; Kerns R; Humayun MS
    Retina; 2013 May; 33(5):928-32. PubMed ID: 23416511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluidics comparison between dual pneumatic and spring return high-speed vitrectomy systems.
    Brant Fernandes RA; Diniz B; Falabella P; Ribeiro R; Teixeira AG; Magalhães O; Moraes N; Maia A; Farah ME; Maia M; Humayun MS
    Ophthalmic Surg Lasers Imaging Retina; 2015 Jan; 46(1):68-72. PubMed ID: 25559512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance analysis of new-generation vitreous cutters.
    Fang SY; DeBoer CM; Humayun MS
    Graefes Arch Clin Exp Ophthalmol; 2008 Jan; 246(1):61-7. PubMed ID: 17876598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cutting phases on flow rate in 20-, 23-, and 25-gauge vitreous cutters.
    Hubschman JP; Bourges JL; Tsui I; Reddy S; Yu F; Schwartz SD
    Retina; 2009 Oct; 29(9):1289-93. PubMed ID: 19730161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery.
    Oshima Y; Wakabayashi T; Sato T; Ohji M; Tano Y
    Ophthalmology; 2010 Jan; 117(1):93-102.e2. PubMed ID: 19880185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitreous dynamics: vitreous flow analysis in 20-, 23-, and 25-gauge cutters.
    Magalhaes O; Chong L; DeBoer C; Bhadri P; Kerns R; Barnes A; Fang S; Humayun M
    Retina; 2008 Feb; 28(2):236-41. PubMed ID: 18301028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous flow rate of vitreous cutter probes.
    Rossi T; Querzoli G; Angelini G; Rossi A; Malvasi C; Iossa M; Ripandelli G
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):8289-94. PubMed ID: 25414180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidics in a dual pneumatic ultra high-speed vitreous cutter system.
    Diniz B; Ribeiro RM; Fernandes RB; Lue JC; Teixeira AG; Maia M; Humayun MS
    Ophthalmologica; 2013; 229(1):15-20. PubMed ID: 23108417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of a 23-gauge ultra high-speed cutter with duty cycle control.
    Diniz B; Fernandes RB; Ribeiro RM; Lue JC; Teixeira AG; Magalhães O; Maia M; Humayun MS
    Retina; 2013 May; 33(5):933-8. PubMed ID: 23416512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitreoretinal traction created by conventional cutters during vitrectomy.
    Teixeira A; Chong LP; Matsuoka N; Arana L; Kerns R; Bhadri P; Humayun M
    Ophthalmology; 2010 Jul; 117(7):1387-92.e2. PubMed ID: 20176400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Port geometry and its influence on vitrectomy.
    DeBoer C; Fang S; Lima LH; McCormick M; Bhadri P; Kerns R; Humayun M
    Retina; 2008 Oct; 28(8):1061-7. PubMed ID: 18779711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study of the flow through a vitreous cutter.
    Juan T; Hubschman JP; Eldredge JD
    J Biomech Eng; 2010 Dec; 132(12):121005. PubMed ID: 21142319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 20-, 23-, and 25-gauge vitreous cutters: performance and characteristics evaluation.
    Hubschman JP; Gupta A; Bourla DH; Culjat M; Yu F; Schwartz SD
    Retina; 2008 Feb; 28(2):249-57. PubMed ID: 18301030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental protocol of the model to quantify traction applied to the retina by vitreous cutters.
    Teixeira A; Chong L; Matsuoka N; Arana L; Lue JC; McCormick M; Kerns R; Bhadri P; Humayun M
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):4181-6. PubMed ID: 20181834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Assessment of the Performance of Dual Pneumatic Vitreous Cutters According to Gauge and Cut Rate.
    Lee S; Choi KS
    Korean J Ophthalmol; 2023 Aug; 37(4):307-313. PubMed ID: 37400083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid dynamics in three 25-gauge vitrectomy systems: principles for use in vitreoretinal surgery.
    Magalhães O; Maia M; Maia A; Penha F; Dib E; Farah ME; Schor P
    Acta Ophthalmol; 2008 Mar; 86(2):156-9. PubMed ID: 18373797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guillotine performance: duty cycle analysis of vitrectomy systems.
    Magalhaes O; Chong L; DeBoer C; Bhadri P; Kerns R; Barnes A; Fang S; Schor P; Humayun M
    Retin Cases Brief Rep; 2009; 3(1):64-7. PubMed ID: 25390843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance analysis of a new hypersonic vitrector system.
    Stanga PE; Pastor-Idoate S; Zambrano I; Carlin P; McLeod D
    PLoS One; 2017; 12(6):e0178462. PubMed ID: 28586375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.
    Dugel PU; Abulon DJ; Dimalanta R
    Retina; 2015 May; 35(5):915-20. PubMed ID: 25621945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.