BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21210647)

  • 21. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme.
    Fabiane SM; Sohi MK; Wan T; Payne DJ; Bateson JH; Mitchell T; Sutton BJ
    Biochemistry; 1998 Sep; 37(36):12404-11. PubMed ID: 9730812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism.
    Davies AM; Rasia RM; Vila AJ; Sutton BJ; Fabiane SM
    Biochemistry; 2005 Mar; 44(12):4841-9. PubMed ID: 15779910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-beta-lactamases .
    González JM; Buschiazzo A; Vila AJ
    Biochemistry; 2010 Sep; 49(36):7930-8. PubMed ID: 20677753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Meropenem and chromacef intermediates observed in IMP-25 metallo-β-lactamase-catalyzed hydrolysis.
    Oelschlaeger P; Aitha M; Yang H; Kang JS; Zhang AL; Liu EM; Buynak JD; Crowder MW
    Antimicrob Agents Chemother; 2015 Jul; 59(7):4326-30. PubMed ID: 25918145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold.
    González JM; Medrano Martín FJ; Costello AL; Tierney DL; Vila AJ
    J Mol Biol; 2007 Nov; 373(5):1141-56. PubMed ID: 17915249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily.
    Bebrone C
    Biochem Pharmacol; 2007 Dec; 74(12):1686-701. PubMed ID: 17597585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding of β-lactam antibiotics to a bioinspired dizinc complex reminiscent of the active site of metallo-β-lactamases.
    Wöckel S; Galezowska J; Dechert S; Meyer F
    Inorg Chem; 2012 Feb; 51(4):2486-93. PubMed ID: 22296309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bulgecin A: a novel inhibitor of binuclear metallo-beta-lactamases.
    Simm AM; Loveridge EJ; Crosby J; Avison MB; Walsh TR; Bennett PM
    Biochem J; 2005 May; 387(Pt 3):585-90. PubMed ID: 15569001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase.
    Weston GS; Blázquez J; Baquero F; Shoichet BK
    J Med Chem; 1998 Nov; 41(23):4577-86. PubMed ID: 9804697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams.
    Wang X; Minasov G; Shoichet BK
    Proteins; 2002 Apr; 47(1):86-96. PubMed ID: 11870868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion.
    Ibuka AS; Ishii Y; Galleni M; Ishiguro M; Yamaguchi K; Frère JM; Matsuzawa H; Sakai H
    Biochemistry; 2003 Sep; 42(36):10634-43. PubMed ID: 12962487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural insights into substrate recognition and product expulsion in CTX-M enzymes.
    Delmas J; Leyssene D; Dubois D; Birck C; Vazeille E; Robin F; Bonnet R
    J Mol Biol; 2010 Jul; 400(1):108-20. PubMed ID: 20452359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calorimetric analysis of cephalosporins using an immobilized TEM-1 beta-lactamase on Ni2+ chelating sepharose fast flow.
    Lawung R; Danielsson B; Prachayasittikul V; Bülow L
    Anal Biochem; 2001 Sep; 296(1):57-62. PubMed ID: 11520032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A metallo-β-lactamase is responsible for the degradation of ceftiofur by the bovine intestinal bacterium Bacillus cereus P41.
    Erickson BD; Elkins CA; Mullis LB; Heinze TM; Wagner RD; Cerniglia CE
    Vet Microbiol; 2014 Aug; 172(3-4):499-504. PubMed ID: 24972871
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational changes induced by cloxacillin in class a beta-lactamase from Bacillus cereus.
    Salas-Burgos A; Martínez-Oyanedel J; Bunster M
    Cell Mol Biol (Noisy-le-grand); 2003 Sep; 49(6):985-90. PubMed ID: 14656057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism.
    Zhang H; Hao Q
    FASEB J; 2011 Aug; 25(8):2574-82. PubMed ID: 21507902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics.
    Kumar S; Adediran SA; Nukaga M; Pratt RF
    Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of beta-lactamases on the development of novel antimicrobial agents.
    Bush K
    Curr Opin Investig Drugs; 2002 Sep; 3(9):1284-90. PubMed ID: 12498001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic characterization of a slow-binding inhibitor of Bla2: thiomaltol.
    Schlesinger SR; Bruner B; Farmer PJ; Kim SK
    J Enzyme Inhib Med Chem; 2013 Feb; 28(1):137-42. PubMed ID: 22233540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.