These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21210662)

  • 1. Reactions between methanethiol and biologically produced sulfur particles.
    van Leerdam RC; van den Bosch PL; Lens PN; Janssen AJ
    Environ Sci Technol; 2011 Feb; 45(4):1320-6. PubMed ID: 21210662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of methanethiol on the biological oxidation of sulfide at natron-alkaline conditions.
    van den Bosch PL; Fortuny-Picornell M; Janssen AJ
    Environ Sci Technol; 2009 Jan; 43(2):453-9. PubMed ID: 19238979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of microbiological sulfide oxidation by methanethiol and dimethyl polysulfides at natron-alkaline conditions.
    van den Bosch PL; de Graaff M; Fortuny-Picornell M; van Leerdam RC; Janssen AJ
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):579-87. PubMed ID: 19333598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental VOSCs--formation and degradation of dimethyl sulfide, methanethiol and related materials.
    Bentley R; Chasteen TG
    Chemosphere; 2004 Apr; 55(3):291-317. PubMed ID: 14987929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H
    Kiragosyan K; Picard M; Sorokin DY; Dijkstra J; Klok JBM; Roman P; Janssen AJH
    J Hazard Mater; 2020 Mar; 386():121916. PubMed ID: 31884361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction mechanisms and kinetics for the oxidations of dimethyl sulfide, dimethyl disulfide, and methyl mercaptan by the nitrate radical.
    Jee J; Tao FM
    J Phys Chem A; 2006 Jun; 110(24):7682-9. PubMed ID: 16774215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries.
    Wu HL; Huff LA; Gewirth AA
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1709-19. PubMed ID: 25543831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low temperature catalytic oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash.
    Kastner JR; Das KC; Buquoi Q; Melear ND
    Environ Sci Technol; 2003 Jun; 37(11):2568-74. PubMed ID: 12831045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the adsorption capacity and breakthrough properties of a synthetic zeolite against a mixture of various sulfur species at low ppb levels.
    Vellingiri K; Kim KH; Kwon EE; Deep A; Jo SH; Szulejko JE
    J Environ Manage; 2016 Jan; 166():484-92. PubMed ID: 26562781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of methanethiol on biological sulphide oxidation in gas treatment system.
    Roman P; Bijmans MF; Janssen AJ
    Environ Technol; 2016; 37(13):1693-703. PubMed ID: 26652658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur.
    Sipma J; Janssen AJ; Pol LW; Lettinga G
    Biotechnol Bioeng; 2003 Apr; 82(1):1-11. PubMed ID: 12569619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological removal of methanethiol from gas and water streams by using Thiobacillus thioparus: investigation of biodegradability and optimization of sulphur production.
    Badr K; Bahmania M; Jahanmiri A; Mowla D
    Environ Technol; 2014 Aug; 35(13-16):1729-35. PubMed ID: 24956764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abatement of volatile organic sulfur compounds in odorous emissions from the bio-industry.
    Smet E; Van Langenhove H
    Biodegradation; 1998; 9(3-4):273-84. PubMed ID: 10022070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic ozonation of gaseous reduced sulfur compounds using wood fly ash.
    Kastner JR; Buquoi Q; Ganagavaram R; Das KC
    Environ Sci Technol; 2005 Mar; 39(6):1835-42. PubMed ID: 15819244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial cycling of volatile organic sulfur compounds.
    Lomans BP; van der Drift C; Pol A; Op den Camp HJ
    Cell Mol Life Sci; 2002 Apr; 59(4):575-88. PubMed ID: 12022467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial cycling of volatile organic sulfur compounds in anoxic environments.
    Lomans BP; Pol A; Op den Camp HJ
    Water Sci Technol; 2002; 45(10):55-60. PubMed ID: 12188577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices.
    Tangerman A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(28):3366-77. PubMed ID: 19505855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated reduction and solubilization of elemental sulfur by 1,2-aminothiols.
    Stoffel JT; Riordan KT; Tsui EY
    Chem Commun (Camb); 2021 Nov; 57(93):12488-12491. PubMed ID: 34747957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophilic attack on sulfur-sulfur bonds: coordination of lithium cations to sulfur-rich molecules studied by ab initio MO methods.
    Steudel Y; Wong MW; Steudel R
    Chemistry; 2005 Feb; 11(4):1281-93. PubMed ID: 15627950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary electrophoretic separation of inorganic sulfur-sulfide, polysulfides, and sulfur-oxygen species.
    Petre CF; Larachi F
    J Sep Sci; 2006 Jan; 29(1):144-52. PubMed ID: 16485720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.