These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21210712)

  • 1. High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite.
    Izadi-Najafabadi A; Yamada T; Futaba DN; Yudasaka M; Takagi H; Hatori H; Iijima S; Hata K
    ACS Nano; 2011 Feb; 5(2):811-9. PubMed ID: 21210712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion diffusion and electrochemical capacitance in aligned and packed single-walled carbon nanotubes.
    Izadi-Najafabadi A; Futaba DN; Iijima S; Hata K
    J Am Chem Soc; 2010 Dec; 132(51):18017-9. PubMed ID: 21141859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.
    Liu R; Duay J; Lane T; Bok Lee S
    Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercritical fluid deposition of vanadium oxide on multi-walled carbon nanotube buckypaper for supercapacitor electrode application.
    Do QH; Zeng C; Zhang C; Wang B; Zheng J
    Nanotechnology; 2011 Sep; 22(36):365402. PubMed ID: 21836323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.
    Yang C; Zhou M; Xu Q
    Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube-ionic liquid composite sensors and biosensors.
    Kachoosangi RT; Musameh MM; Abu-Yousef I; Yousef JM; Kanan SM; Xiao L; Davies SG; Russell A; Compton RG
    Anal Chem; 2009 Jan; 81(1):435-42. PubMed ID: 19117466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films.
    Ge J; Cheng G; Chen L
    Nanoscale; 2011 Aug; 3(8):3084-8. PubMed ID: 21738910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes.
    Jiang H; Li C; Sun T; Ma J
    Nanoscale; 2012 Feb; 4(3):807-12. PubMed ID: 22159343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor.
    Liu R; Cho SI; Lee SB
    Nanotechnology; 2008 May; 19(21):215710. PubMed ID: 21730589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes.
    Chen PC; Shen G; Shi Y; Chen H; Zhou C
    ACS Nano; 2010 Aug; 4(8):4403-11. PubMed ID: 20731426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors.
    Huang F; Lou F; Chen D
    ChemSusChem; 2012 May; 5(5):888-95. PubMed ID: 22411903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution.
    Chang J; Najeeb CK; Lee JH; Kim JH
    Langmuir; 2011 Jun; 27(11):7330-6. PubMed ID: 21557548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
    Yan J; Khoo E; Sumboja A; Lee PS
    ACS Nano; 2010 Jul; 4(7):4247-55. PubMed ID: 20593844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced field emission and improved supercapacitor obtained from plasma-modified bucky paper.
    Roy S; Bajpai R; Soin N; Bajpai P; Hazra KS; Kulshrestha N; Roy SS; McLaughlin JA; Misra DS
    Small; 2011 Mar; 7(5):688-93. PubMed ID: 21302358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reversible redox strategy for SWCNT-based supercapacitors using a high-performance electrolyte.
    Yu H; Wu J; Lin J; Fan L; Huang M; Lin Y; Li Y; Yu F; Qiu Z
    Chemphyschem; 2013 Feb; 14(2):394-9. PubMed ID: 23303585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-nanotube-alginate composite modified electrode fabricated by in situ gelation for capillary electrophoresis.
    Wei B; Wang J; Chen Z; Chen G
    Chemistry; 2008; 14(31):9779-85. PubMed ID: 18773408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.