These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21210730)

  • 1. Maximum contact map overlap revisited.
    Andonov R; Malod-Dognin N; Yanev N
    J Comput Biol; 2011 Jan; 18(1):27-41. PubMed ID: 21210730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1001 optimal PDB structure alignments: integer programming methods for finding the maximum contact map overlap.
    Caprara A; Carr R; Istrail S; Lancia G; Walenz B
    J Comput Biol; 2004; 11(1):27-52. PubMed ID: 15072687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reduction-based exact algorithm for the contact map overlap problem.
    Xie W; Sahinidis NV
    J Comput Biol; 2007 Jun; 14(5):637-54. PubMed ID: 17683265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast overlapping of protein contact maps by alignment of eigenvectors.
    Di Lena P; Fariselli P; Margara L; Vassura M; Casadio R
    Bioinformatics; 2010 Sep; 26(18):2250-8. PubMed ID: 20610612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GR-Align: fast and flexible alignment of protein 3D structures using graphlet degree similarity.
    Malod-Dognin N; Pržulj N
    Bioinformatics; 2014 May; 30(9):1259-65. PubMed ID: 24443377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divide and Conquer Approach to Contact Map Overlap Problem Using 2D-Pattern Mining of Protein Contact Networks.
    Koneru SV; Bhavani DS
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):729-37. PubMed ID: 26357311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein threading by linear programming.
    Xu J; Li M; Lin G; Kim D; Xu Y
    Pac Symp Biocomput; 2003; ():264-75. PubMed ID: 12603034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAPTOR: optimal protein threading by linear programming.
    Xu J; Li M; Kim D; Xu Y
    J Bioinform Comput Biol; 2003 Apr; 1(1):95-117. PubMed ID: 15290783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):665-78. PubMed ID: 10966776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards optimal alignment of protein structure distance matrices.
    Wohlers I; Domingues FS; Klau GW
    Bioinformatics; 2010 Sep; 26(18):2273-80. PubMed ID: 20639543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated search and alignment of protein structures.
    Sacan A; Toroslu IH; Ferhatosmanoglu H
    Bioinformatics; 2008 Dec; 24(24):2872-9. PubMed ID: 18945684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward high-throughput, multicriteria protein-structure comparison and analysis.
    Shah AA; Folino G; Krasnogor N
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):144-55. PubMed ID: 20650704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A similarity matrix-based hybrid algorithm for the contact map overlaps problem.
    Lu H; Yang G; Yeung LF
    Comput Biol Med; 2011 May; 41(5):247-52. PubMed ID: 21439563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact parallel maximum clique algorithm for general and protein graphs.
    Depolli M; Konc J; Rozman K; Trobec R; Janežič D
    J Chem Inf Model; 2013 Sep; 53(9):2217-28. PubMed ID: 23965016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FAST: a novel protein structure alignment algorithm.
    Zhu J; Weng Z
    Proteins; 2005 Feb; 58(3):618-27. PubMed ID: 15609341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representing and comparing protein folds and fold families using three-dimensional shape-density representations.
    Mavridis L; Ghoorah AW; Venkatraman V; Ritchie DW
    Proteins; 2012 Feb; 80(2):530-45. PubMed ID: 22081520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein docking using case-based reasoning.
    Ghoorah AW; Devignes MD; Smaïl-Tabbone M; Ritchie DW
    Proteins; 2013 Dec; 81(12):2150-8. PubMed ID: 24123156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Searching protein 3-D structures for optimal structure alignment using intelligent algorithms and data structures.
    Novosád T; Snášel V; Abraham A; Yang JY
    IEEE Trans Inf Technol Biomed; 2010 Nov; 14(6):1378-86. PubMed ID: 20876026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The value of protein structure classification information-Surveying the scientific literature.
    Fox NK; Brenner SE; Chandonia JM
    Proteins; 2015 Nov; 83(11):2025-38. PubMed ID: 26313554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Smith-Waterman residue match seeding for protein structural alignment.
    Topham CM; Rouquier M; Tarrat N; André I
    Proteins; 2013 Oct; 81(10):1823-39. PubMed ID: 23720362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.