These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 21210938)

  • 1. Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge.
    Kuratani S; Kuraku S; Nagashima H
    Evol Dev; 2011; 13(1):1-14. PubMed ID: 21210938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the turtle body plan by the folding and creation of new muscle connections.
    Nagashima H; Sugahara F; Takechi M; Ericsson R; Kawashima-Ohya Y; Narita Y; Kuratani S
    Science; 2009 Jul; 325(5937):193-6. PubMed ID: 19590000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the carapacial ridge in turtle embryos: its developmental origin, function and the chelonian body plan.
    Nagashima H; Kuraku S; Uchida K; Ohya YK; Narita Y; Kuratani S
    Development; 2007 Jun; 134(12):2219-26. PubMed ID: 17507399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body plan of turtles: an anatomical, developmental and evolutionary perspective.
    Nagashima H; Kuraku S; Uchida K; Kawashima-Ohya Y; Narita Y; Kuratani S
    Anat Sci Int; 2012 Mar; 87(1):1-13. PubMed ID: 22131042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolutionary origin of the turtle shell and its dependence on the axial arrest of the embryonic rib cage.
    Hirasawa T; Pascual-Anaya J; Kamezaki N; Taniguchi M; Mine K; Kuratani S
    J Exp Zool B Mol Dev Evol; 2015 May; 324(3):194-207. PubMed ID: 24898540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge.
    Pascual-Anaya J; Hirasawa T; Sato I; Kuraku S; Kuratani S
    Int J Dev Biol; 2014; 58(10-12):743-50. PubMed ID: 26154315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution.
    Kuraku S; Usuda R; Kuratani S
    Evol Dev; 2005; 7(1):3-17. PubMed ID: 15642085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How the turtle forms its shell: a paracrine hypothesis of carapace formation.
    Cebra-Thomas J; Tan F; Sistla S; Estes E; Bender G; Kim C; Riccio P; Gilbert SF
    J Exp Zool B Mol Dev Evol; 2005 Nov; 304(6):558-69. PubMed ID: 15968684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution. How did the turtle get its shell?
    Rieppel O
    Science; 2009 Jul; 325(5937):154-5. PubMed ID: 19589988
    [No Abstract]   [Full Text] [Related]  

  • 10. Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle.
    Ohya YK; Kuraku S; Kuratani S
    J Exp Zool B Mol Dev Evol; 2005 Mar; 304(2):107-18. PubMed ID: 15643629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the carapacial ridge: implications for the evolution of genetic networks in turtle shell development.
    Moustakas JE
    Evol Dev; 2008; 10(1):29-36. PubMed ID: 18184355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatocyte growth factor is crucial for development of the carapace in turtles.
    Kawashima-Ohya Y; Narita Y; Nagashima H; Usuda R; Kuratani S
    Evol Dev; 2011; 13(3):260-8. PubMed ID: 21535464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Analysis of Transcriptome and Translatome Revealed That Coordinated WNT and FGF Regulate the Carapacial Ridge Development of Chinese Soft-Shell Turtle.
    Zhang J; Yu P; Zhao Y; Zhou Q; Yang J; Hu Q; Liu T; Bao C; Su S; Gui JF
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ancestral turtle from the Late Triassic of southwestern China.
    Li C; Wu XC; Rieppel O; Wang LT; Zhao LJ
    Nature; 2008 Nov; 456(7221):497-501. PubMed ID: 19037315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin and loss of periodic patterning in the turtle shell.
    Moustakas-Verho JE; Zimm R; Cebra-Thomas J; Lempiäinen NK; Kallonen A; Mitchell KL; Hämäläinen K; Salazar-Ciudad I; Jernvall J; Gilbert SF
    Development; 2014 Aug; 141(15):3033-9. PubMed ID: 25053434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging from the rib: resolving the turtle controversies.
    Rice R; Riccio P; Gilbert SF; Cebra-Thomas J
    J Exp Zool B Mol Dev Evol; 2015 May; 324(3):208-20. PubMed ID: 25675951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turtle-chicken chimera: an experimental approach to understanding evolutionary innovation in the turtle.
    Nagashima H; Uchida K; Yamamoto K; Kuraku S; Usuda R; Kuratani S
    Dev Dyn; 2005 Jan; 232(1):149-61. PubMed ID: 15580555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary origin of the turtle shell.
    Lyson TR; Bever GS; Scheyer TM; Hsiang AY; Gauthier JA
    Curr Biol; 2013 Jun; 23(12):1113-9. PubMed ID: 23727095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic similarities and differences between the limb bud AER and unique carapacial ridge of turtle embryos.
    Cordero GA
    Evol Dev; 2020 Sep; 22(5):370-383. PubMed ID: 32862496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The endoskeletal origin of the turtle carapace.
    Hirasawa T; Nagashima H; Kuratani S
    Nat Commun; 2013; 4():2107. PubMed ID: 23836118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.