These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21210975)

  • 1. A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data.
    Costa PR; Acencio ML; Lemke N
    BMC Genomics; 2010 Dec; 11 Suppl 5(Suppl 5):S9. PubMed ID: 21210975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information.
    Acencio ML; Lemke N
    BMC Bioinformatics; 2009 Sep; 10():290. PubMed ID: 19758426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the druggability of protein-protein interactions by a supervised machine-learning method.
    Sugaya N; Ikeda K
    BMC Bioinformatics; 2009 Aug; 10():263. PubMed ID: 19703312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DrugPred: a structure-based approach to predict protein druggability developed using an extensive nonredundant data set.
    Krasowski A; Muthas D; Sarkar A; Schmitt S; Brenk R
    J Chem Inf Model; 2011 Nov; 51(11):2829-42. PubMed ID: 21995295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targetability of human disease genes.
    Sakharkar MK; Sakharkar KR
    Curr Drug Discov Technol; 2007 Jun; 4(1):48-58. PubMed ID: 17630928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network.
    You ZH; Yin Z; Han K; Huang DS; Zhou X
    BMC Bioinformatics; 2010 Jun; 11():343. PubMed ID: 20573270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and identification of essential genes in humans using topological properties and biological information.
    Yang L; Wang J; Wang H; Lv Y; Zuo Y; Li X; Jiang W
    Gene; 2014 Nov; 551(2):138-51. PubMed ID: 25168893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the druggability of the human proteome with eFindSite.
    Kana O; Brylinski M
    J Comput Aided Mol Des; 2019 May; 33(5):509-519. PubMed ID: 30888556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug target ontology to classify and integrate drug discovery data.
    Lin Y; Mehta S; Küçük-McGinty H; Turner JP; Vidovic D; Forlin M; Koleti A; Nguyen DT; Jensen LJ; Guha R; Mathias SL; Ursu O; Stathias V; Duan J; Nabizadeh N; Chung C; Mader C; Visser U; Yang JJ; Bologa CG; Oprea TI; Schürer SC
    J Biomed Semantics; 2017 Nov; 8(1):50. PubMed ID: 29122012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering disease-genes by topological features in human protein-protein interaction network.
    Xu J; Li Y
    Bioinformatics; 2006 Nov; 22(22):2800-5. PubMed ID: 16954137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Druggability of human disease genes.
    Sakharkar MK; Sakharkar KR; Pervaiz S
    Int J Biochem Cell Biol; 2007; 39(6):1156-64. PubMed ID: 17446117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based view of the druggable genome.
    Wang J; Yazdani S; Han A; Schapira M
    Drug Discov Today; 2020 Mar; 25(3):561-567. PubMed ID: 32084498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulation and Prediction of Druggable Binding Sites.
    Feng T; Barakat K
    Methods Mol Biol; 2018; 1762():87-103. PubMed ID: 29594769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-supervised protein subcellular localization.
    Xu Q; Hu DH; Xue H; Yu W; Yang Q
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S47. PubMed ID: 19208149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics.
    Koromina M; Pandi MT; Patrinos GP
    OMICS; 2019 Nov; 23(11):539-548. PubMed ID: 31651216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34259329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Research on Druggable Proteins: From PSSM to Pre-Trained Language Models.
    Chu H; Liu T
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PINNED: identifying characteristics of druggable human proteins using an interpretable neural network.
    Cunningham M; Pins D; Dezső Z; Torrent M; Vasanthakumar A; Pandey A
    J Cheminform; 2023 Jul; 15(1):64. PubMed ID: 37468968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based assessment and druggability classification of protein-protein interaction sites.
    Alzyoud L; Bryce RA; Al Sorkhy M; Atatreh N; Ghattas MA
    Sci Rep; 2022 May; 12(1):7975. PubMed ID: 35562538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.