These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 212114)

  • 41. Orientation of chromatophores and spheroplast-derived membrane vesicles of Rhodopseudomonas sphaeroides: analysis by localization of enzyme activities.
    Takemoto J; Bachmann RC
    Arch Biochem Biophys; 1979 Jul; 195(2):526-34. PubMed ID: 157720
    [No Abstract]   [Full Text] [Related]  

  • 42. Localization of the primary quinone binding site in reaction centers from Rhodopseudomonas sphaeroides R-26 by photoaffinity labeling.
    Marinetti TD; Okamura MY; Feher G
    Biochemistry; 1979 Jul; 18(14):3126-33. PubMed ID: 223628
    [No Abstract]   [Full Text] [Related]  

  • 43. Light-induced proton gradients and internal volumes in chromatophores of Rhodopseudomonas sphaeroides.
    Melandri BA; Mehlhorn RJ; Packer L
    Arch Biochem Biophys; 1984 Nov; 235(1):97-105. PubMed ID: 6093711
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-resolved ESR and chemically induced dynamic electron polarisation of the primary reaction in a reaction center particle of Rhodopseudomonas sphaeroides wild type at low temperature.
    Hoff AJ; Gast P; Romijn JC
    FEBS Lett; 1977 Feb; 73(2):185-90. PubMed ID: 190035
    [No Abstract]   [Full Text] [Related]  

  • 45. Direct measurement of the redox potential of the primary and secondary quinone electron acceptors in Rhodopseudomonas sphaeroides (wild-type) by EPR spectrometry.
    Rutherford AW; Evans MC
    FEBS Lett; 1980 Feb; 110(2):257-61. PubMed ID: 6245923
    [No Abstract]   [Full Text] [Related]  

  • 46. Cell-cycle-specific biosynthesis of the photosynthetic membrane of Rhodopseudomonas sphaeroides. Structural implications.
    Yen GS; Cain BD; Kaplan S
    Biochim Biophys Acta; 1984 Oct; 777(1):41-55. PubMed ID: 6333251
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immunochemical analysis of membrane vesicles and chromatophoresis of Rhodopseudomonas sphaeroides by crossed immunoelectrophoresis.
    Elferink MG; Hellingwerf KJ; Michels PA; Seÿen HG; Konings WN
    FEBS Lett; 1979 Nov; 107(2):300-7. PubMed ID: 159833
    [No Abstract]   [Full Text] [Related]  

  • 48. Surface potential on the periplasmic side of the photosynthetic membrane of Rhodopseudomonas sphaeroides.
    Matsuura K; Masamoto K; Itoh S; Nishimura M
    Biochim Biophys Acta; 1980 Aug; 592(1):121-9. PubMed ID: 6967328
    [No Abstract]   [Full Text] [Related]  

  • 49. Energy transfer in bacterial photosynthesis. I. Light intensity dependences of fluorescence lifetimes.
    Borisov AY; Godik VI
    J Bioenerg; 1972 Jun; 3(3):211-20. PubMed ID: 4538075
    [No Abstract]   [Full Text] [Related]  

  • 50. Physical mechanisms in photosynthesis: past elucidations and current problems.
    Clayton RK
    Proc Natl Acad Sci U S A; 1972 Jan; 69(1):44-9. PubMed ID: 4333045
    [No Abstract]   [Full Text] [Related]  

  • 51. Organization and expression of genes for photosynthetic pigments-protein complexes in photosynthetic bacteria.
    Zhu YS; Hearst JE
    Biotechnology; 1989; 12():257-91. PubMed ID: 2653478
    [No Abstract]   [Full Text] [Related]  

  • 52. Time-resolved magnetic field effect on triplet formation in photosynthetic reaction centers of Rhodopseudomonas sphaeroides R-26.
    Michel-Beyerle ME; Scheer H; Seidlitz H; Tempus D; Haberkorn R
    FEBS Lett; 1979 Apr; 100(1):9-12. PubMed ID: 312214
    [No Abstract]   [Full Text] [Related]  

  • 53. Protein components of bacterial photosynthetic membranes.
    Clayton RK; Haselkorn R
    J Mol Biol; 1972 Jul; 68(1):97-105. PubMed ID: 4115110
    [No Abstract]   [Full Text] [Related]  

  • 54. Spectroscopic investigation of the inhibitory effect of fatty acids on photosynthetic systems.
    Steffen H; Calvin M
    Nat New Biol; 1971 Dec; 234(49):165-8. PubMed ID: 5316369
    [No Abstract]   [Full Text] [Related]  

  • 55. An identification of the radical giving rise to the light-induced electron spin resonance signal in photosynthetic bacteria.
    Bolton JR; Clayton RK; Reed DW
    Photochem Photobiol; 1969 Mar; 9(3):209-18. PubMed ID: 4306353
    [No Abstract]   [Full Text] [Related]  

  • 56. Further studies on the Rieske iron-sulfur center in mitochondrial and photosynthetic systems: a pK on the oxidized form.
    Prince RG; Dutton PL
    FEBS Lett; 1976 May; 65(1):117-9. PubMed ID: 1084289
    [No Abstract]   [Full Text] [Related]  

  • 57. Picosecond kinetics in reaction centers of Rps. sphaeroides and the effects of ubiquinone extraction and reconstitution.
    Kaufmann KJ; Petty KM; Dutton PL; Rentzepis PM
    Biochem Biophys Res Commun; 1976 Jun; 70(3):839-45. PubMed ID: 1084745
    [No Abstract]   [Full Text] [Related]  

  • 58. Electron spin echo spectroscopy and the study of biological structure and function.
    Norris JR; Thurnauer MC; Bowman MK
    Adv Biol Med Phys; 1980; 17():365-416. PubMed ID: 6257059
    [No Abstract]   [Full Text] [Related]  

  • 59. Optically excited triplet states in the bacteria Rhodopseudomonas sphaeroides 'wild-type' detected by magnetic resonance in zero-field.
    Beck J; Kaiser GH; von Schütz JU; Wolf HC
    Biochim Biophys Acta; 1981 Jan; 634(1):165-73. PubMed ID: 6970594
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison, by freeze-fracture electron microscopy, of chromatophores, spheroplast-derived membrane vesicles, and whole cells of Rhodopseudomonas sphaeroides.
    Lommen MA; Takemoto J
    J Bacteriol; 1978 Nov; 136(2):730-41. PubMed ID: 309467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.