These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 21211815)
1. Identification and characterization of coagulation inhibitor proteins derived from cyanobacterium Microcystis aeruginosa. Sano D; Ishifuji S; Sato Y; Imae Y; Takaara T; Masago Y; Omura T Chemosphere; 2011 Feb; 82(8):1096-102. PubMed ID: 21211815 [TBL] [Abstract][Full Text] [Related]
2. Cellular proteins of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride. Takaara T; Sano D; Konno H; Omura T Water Res; 2007 Apr; 41(8):1653-8. PubMed ID: 17353025 [TBL] [Abstract][Full Text] [Related]
3. Surface-retained organic matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking water treatment. Takaara T; Sano D; Masago Y; Omura T Water Res; 2010 Jul; 44(13):3781-6. PubMed ID: 20570314 [TBL] [Abstract][Full Text] [Related]
4. Selective control of toxic Microcystis water blooms using lysine and malonic acid: an enclosure experiment. Kaya K; Liu YD; Shen YW; Xiao BD; Sano T Environ Toxicol; 2005 Apr; 20(2):170-8. PubMed ID: 15793822 [TBL] [Abstract][Full Text] [Related]
5. Ultrasound-enhanced coagulation for Microcystis aeruginosa removal. Zhang G; Zhang P; Fan M Ultrason Sonochem; 2009 Mar; 16(3):334-8. PubMed ID: 19083255 [TBL] [Abstract][Full Text] [Related]
6. Effects of Tibetan hulless barley on bloom-forming cyanobacterium (Microcystis aeruginosa) measured by different physiological and morphologic parameters. Xiao X; Chen YX; Liang XQ; Lou LP; Tang XJ Chemosphere; 2010 Nov; 81(9):1118-23. PubMed ID: 20934201 [TBL] [Abstract][Full Text] [Related]
7. Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Park MH; Han MS; Ahn CY; Kim HS; Yoon BD; Oh HM Lett Appl Microbiol; 2006 Sep; 43(3):307-12. PubMed ID: 16910937 [TBL] [Abstract][Full Text] [Related]
8. Examination of the physical properties of Microcystis aeruginosa flocs produced on coagulation with metal salts. Gonzalez-Torres A; Putnam J; Jefferson B; Stuetz RM; Henderson RK Water Res; 2014 Sep; 60():197-209. PubMed ID: 24859233 [TBL] [Abstract][Full Text] [Related]
9. Mechanism study on the frequent variations of cell-bound microcystins in cyanobacterial blooms in Lake Taihu: implications for water quality monitoring and assessments. Chen W; Peng L; Wan N; Song L Chemosphere; 2009 Dec; 77(11):1585-93. PubMed ID: 19853885 [TBL] [Abstract][Full Text] [Related]
10. [Methods for prevention of mass development of the cyanobacterium Microcystis aeruginosa Kutz emend. Elenk. in aquatic ecosystems]. Kolmakov VI Mikrobiologiia; 2006; 75(2):149-53. PubMed ID: 16758860 [TBL] [Abstract][Full Text] [Related]
11. Toxic effects produced by microcystins from a natural cyanobacterial bloom and a Microcystis aeruginosa isolated strain on the fish cell lines RTG-2 and PLHC-1. Pichardo S; Jos A; Zurita J; Salguero M; Camean AM; Repetto G Arch Environ Contam Toxicol; 2006 Jul; 51(1):86-96. PubMed ID: 16485170 [TBL] [Abstract][Full Text] [Related]
12. Rapid catalytic microwave method to damage Microcystis aeruginosa with FeCl3-loaded active carbon. Li P; Zhang L; Wang W; Su J; Feng L Environ Sci Technol; 2011 May; 45(10):4521-6. PubMed ID: 21513270 [TBL] [Abstract][Full Text] [Related]
13. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Hong Y; Hu HY; Xie X; Sakoda A; Sagehashi M; Li FM Aquat Toxicol; 2009 Feb; 91(3):262-9. PubMed ID: 19131120 [TBL] [Abstract][Full Text] [Related]
14. Mn(VII)-Fe(II) pre-treatment for Microcystis aeruginosa removal by Al coagulation: simultaneous enhanced cyanobacterium removal and residual coagulant control. Ma M; Liu R; Liu H; Qu J Water Res; 2014 Nov; 65():73-84. PubMed ID: 25090625 [TBL] [Abstract][Full Text] [Related]
15. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Pan G; Zhang MM; Chen H; Zou H; Yan H Environ Pollut; 2006 May; 141(2):195-200. PubMed ID: 16236411 [TBL] [Abstract][Full Text] [Related]
16. [Effects of Algal Morphology and Al Species Distribution on the Coagulation-Ultrafiltration Process]. Zhang DW; Xu H; Wang X; Men B; Wang DS; Duan JM Huan Jing Ke Xue; 2017 Aug; 38(8):3281-3289. PubMed ID: 29964936 [TBL] [Abstract][Full Text] [Related]
17. The Microcystis cyanobacteria bloom in the Swan River--February 2000. Atkins R; Rose T; Brown RS; Robb M Water Sci Technol; 2001; 43(9):107-14. PubMed ID: 11419118 [TBL] [Abstract][Full Text] [Related]
18. Integration of dissolved gas flotation and nanofiltration for M. aeruginosa and associated microcystins removal. Teixeira MR; Rosa MJ Water Res; 2006 Nov; 40(19):3612-20. PubMed ID: 16860837 [TBL] [Abstract][Full Text] [Related]
19. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Schatz D; Keren Y; Vardi A; Sukenik A; Carmeli S; Börner T; Dittmann E; Kaplan A Environ Microbiol; 2007 Apr; 9(4):965-70. PubMed ID: 17359268 [TBL] [Abstract][Full Text] [Related]
20. Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water. Izydorczyk K; Tarczynska M; Jurczak T; Mrowczynski J; Zalewski M Environ Toxicol; 2005 Aug; 20(4):425-30. PubMed ID: 16007662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]