These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 21212238)

  • 1. High-confidence discovery of genetic network regulators in expression quantitative trait loci data.
    Duarte CW; Zeng ZB
    Genetics; 2011 Mar; 187(3):955-64. PubMed ID: 21212238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene network inference via structural equation modeling in genetical genomics experiments.
    Liu B; de la Fuente A; Hoeschele I
    Genetics; 2008 Mar; 178(3):1763-76. PubMed ID: 18245846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian partition method for detecting pleiotropic and epistatic eQTL modules.
    Zhang W; Zhu J; Schadt EE; Liu JS
    PLoS Comput Biol; 2010 Jan; 6(1):e1000642. PubMed ID: 20090830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.
    Logsdon BA; Mezey J
    PLoS Comput Biol; 2010 Dec; 6(12):e1001014. PubMed ID: 21152011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structured association analysis leads to insight into Saccharomyces cerevisiae gene regulation by finding multiple contributing eQTL hotspots associated with functional gene modules.
    Curtis RE; Kim S; Woolford JL; Xu W; Xing EP
    BMC Genomics; 2013 Mar; 14():196. PubMed ID: 23514438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causal inference of regulator-target pairs by gene mapping of expression phenotypes.
    Kulp DC; Jagalur M
    BMC Genomics; 2006 May; 7():125. PubMed ID: 16719927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning gene networks under SNP perturbations using eQTL datasets.
    Zhang L; Kim S
    PLoS Comput Biol; 2014 Feb; 10(2):e1003420. PubMed ID: 24586125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
    Ludl AA; Michoel T
    Mol Omics; 2021 Apr; 17(2):241-251. PubMed ID: 33438713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
    Cai X; Bazerque JA; Giannakis GB
    PLoS Comput Biol; 2013; 9(5):e1003068. PubMed ID: 23717196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetics of single-cell protein abundance variation in large yeast populations.
    Albert FW; Treusch S; Shockley AH; Bloom JS; Kruglyak L
    Nature; 2014 Feb; 506(7489):494-7. PubMed ID: 24402228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetical genomics analysis of a yeast segregant population for transcription network inference.
    Bing N; Hoeschele I
    Genetics; 2005 Jun; 170(2):533-42. PubMed ID: 15781693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methodological aspects of the genetic dissection of gene expression.
    Carlborg O; De Koning DJ; Manly KF; Chesler E; Williams RW; Haley CS
    Bioinformatics; 2005 May; 21(10):2383-93. PubMed ID: 15613385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and robust group-wise eQTL mapping using sparse graphical models.
    Cheng W; Shi Y; Zhang X; Wang W
    BMC Bioinformatics; 2015 Jan; 16():2. PubMed ID: 25593000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal genetic association and temporal genetic causality methods for dissecting complex networks.
    Lin L; Chen Q; Hirsch JP; Yoo S; Yeung K; Bumgarner RE; Tu Z; Schadt EE; Zhu J
    Nat Commun; 2018 Sep; 9(1):3980. PubMed ID: 30266904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prior knowledge guided eQTL mapping for identifying candidate genes.
    Wang Y; Richard R; Pan Y
    BMC Bioinformatics; 2016 Dec; 17(1):531. PubMed ID: 27964730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genetical genomics approach to genome scans increases power for QTL mapping.
    Sun G; Schliekelman P
    Genetics; 2011 Mar; 187(3):939-53. PubMed ID: 21196521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development.
    Baker RL; Leong WF; Brock MT; Rubin MJ; Markelz RJC; Welch S; Maloof JN; Weinig C
    PLoS Genet; 2019 Sep; 15(9):e1008367. PubMed ID: 31513571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical modeling of clinical and expression quantitative trait loci.
    Sillanpää MJ; Noykova N
    Heredity (Edinb); 2008 Sep; 101(3):271-84. PubMed ID: 18648392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel distal eQTL analysis demonstrates effect of population genetic architecture on detecting and interpreting associations.
    Weiser M; Mukherjee S; Furey TS
    Genetics; 2014 Nov; 198(3):879-93. PubMed ID: 25230953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci.
    Ju JH; Shenoy SA; Crystal RG; Mezey JG
    PLoS Comput Biol; 2017 May; 13(5):e1005537. PubMed ID: 28505156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.