These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21212350)

  • 1. Biscrolling nanotube sheets and functional guests into yarns.
    Lima MD; Fang S; Lepró X; Lewis C; Ovalle-Robles R; Carretero-González J; Castillo-Martínez E; Kozlov ME; Oh J; Rawat N; Haines CS; Haque MH; Aare V; Stoughton S; Zakhidov AA; Baughman RH
    Science; 2011 Jan; 331(6013):51-5. PubMed ID: 21212350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices.
    Lee JA; Shin MK; Kim SH; Cho HU; Spinks GM; Wallace GG; Lima MD; Lepró X; Kozlov ME; Baughman RH; Kim SJ
    Nat Commun; 2013; 4():1970. PubMed ID: 23733169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional carbon nanotube yarns by downsizing an ancient technology.
    Zhang M; Atkinson KR; Baughman RH
    Science; 2004 Nov; 306(5700):1358-61. PubMed ID: 15550667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.
    Miller SG; Williams TS; Baker JS; Solá F; Lebron-Colon M; McCorkle LS; Wilmoth NG; Gaier J; Chen M; Meador MA
    ACS Appl Mater Interfaces; 2014 May; 6(9):6120-6. PubMed ID: 24720450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors.
    Choi C; Kim KM; Kim KJ; Lepró X; Spinks GM; Baughman RH; Kim SJ
    Nat Commun; 2016 Dec; 7():13811. PubMed ID: 27976668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of twist and porosity on the electrical conductivity of carbon nanofiber yarns.
    Chawla S; Naraghi M; Davoudi A
    Nanotechnology; 2013 Jun; 24(25):255708. PubMed ID: 23727878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method.
    Liu K; Sun Y; Zhou R; Zhu H; Wang J; Liu L; Fan S; Jiang K
    Nanotechnology; 2010 Jan; 21(4):045708. PubMed ID: 20009208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Top-down process based on electrospinning, twisting, and heating for producing one-dimensional carbon nanotube assembly.
    Imaizumi S; Matsumoto H; Konosu Y; Tsuboi K; Minagawa M; Tanioka A; Koziol K; Windle A
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):469-75. PubMed ID: 21268647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals.
    Zhang D; Yang W; Gong W; Ma W; Hou C; Li Y; Zhang Q; Wang H
    Adv Mater; 2021 Jul; 33(26):e2100782. PubMed ID: 34028894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scale and twist effects on the strength of nanostructured yarns and reinforced composites.
    Beyerlein IJ; Porwal PK; Zhu YT; Hu K; Xu XF
    Nanotechnology; 2009 Dec; 20(48):485702. PubMed ID: 19880980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural model for dry-drawing of sheets and yarns from carbon nanotube forests.
    Kuznetsov AA; Fonseca AF; Baughman RH; Zakhidov AA
    ACS Nano; 2011 Feb; 5(2):985-93. PubMed ID: 21294525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong, Twist-Stable Carbon Nanotube Yarns and Muscles by Tension Annealing at Extreme Temperatures.
    Di J; Fang S; Moura FA; Galvão DS; Bykova J; Aliev A; de Andrade MJ; Lepró X; Li N; Haines C; Ovalle-Robles R; Qian D; Baughman RH
    Adv Mater; 2016 Aug; 28(31):6598-605. PubMed ID: 27184216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly twisted double-helix carbon nanotube yarns.
    Shang Y; Li Y; He X; Du S; Zhang L; Shi E; Wu S; Li Z; Li P; Wei J; Wang K; Zhu H; Wu D; Cao A
    ACS Nano; 2013 Feb; 7(2):1446-53. PubMed ID: 23289799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns.
    Galvan-Garcia P; Keefer EW; Yang F; Zhang M; Fang S; Zakhidov AA; Baughman RH; Romero MI
    J Biomater Sci Polym Ed; 2007; 18(10):1245-61. PubMed ID: 17939884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multiscale study of high performance double-walled nanotube-polymer fibers.
    Naraghi M; Filleter T; Moravsky A; Locascio M; Loutfy RO; Espinosa HD
    ACS Nano; 2010 Nov; 4(11):6463-76. PubMed ID: 20977259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles.
    Choi C; Park JW; Kim KJ; Lee DW; de Andrade MJ; Kim SH; Gambhir S; Spinks GM; Baughman RH; Kim SJ
    RSC Adv; 2018 Apr; 8(24):13112-13120. PubMed ID: 35542516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallic conductivity transition of carbon nanotube yarns coated with silver particles.
    Zhang D; Zhang Y; Miao M
    Nanotechnology; 2014 Jul; 25(27):275702. PubMed ID: 24960558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls.
    Xu Z; Buehler MJ
    ACS Nano; 2010 Jul; 4(7):3869-76. PubMed ID: 20597529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials.
    Compton OC; Nguyen ST
    Small; 2010 Mar; 6(6):711-23. PubMed ID: 20225186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.