BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

28 related articles for article (PubMed ID: 21212475)

  • 1. A Janus, robust, biodegradable bacterial cellulose/Ti
    Zhou H; Zhao Y; Zha X; Zhang Z; Zhang L; Wu Y; Ren R; Zhao Z; Yang W; Zhao L
    Biomater Adv; 2024 Jul; 161():213892. PubMed ID: 38795472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of photobiomodulation therapy associated with guided bone regeneration in critical size defects. In vivo study.
    Freitas NR; Guerrini LB; Esper LA; Sbrana MC; Dalben GDS; Soares S; Almeida ALPF
    J Appl Oral Sci; 2018; 26():e20170244. PubMed ID: 29742256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice.
    Zhang M; Jasim DA; Ménard-Moyon C; Nunes A; Iijima S; Bianco A; Yudasaka M; Kostarelos K
    Int J Nanomedicine; 2016; 11():3317-30. PubMed ID: 27524892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percolative Composites with Carbon Nanohorns: Low-Frequency and Ultra-High Frequency Response.
    Sedelnikova OV; Baskakova KI; Gusel'nikov AV; Plyusnin PE; Bulusheva LG; Okotrub AV
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31174401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophages in guided bone regeneration: potential roles and future directions.
    Gou M; Wang H; Xie H; Song H
    Front Immunol; 2024; 15():1396759. PubMed ID: 38736888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility Evaluation of Carbon Nanohorns in Bone Tissues.
    Ueda K; Ma C; Izumiya M; Kuroda C; Ishida H; Uemura T; Saito N; Aoki K; Haniu H
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36677997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer.
    Moreno-Lanceta A; Medrano-Bosch M; Melgar-Lesmes P
    Pharmaceutics; 2020 Sep; 12(9):. PubMed ID: 32906852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of a carbon nanomaterial-based localized drug-release system using a bispecific material-binding peptide.
    Kokubun K; Matsumura S; Yudasaka M; Iijima S; Shiba K
    Int J Nanomedicine; 2018; 13():1643-1652. PubMed ID: 29588591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanostructures in Bone Tissue Engineering.
    Perkins BL; Naderi N
    Open Orthop J; 2016; 10():877-899. PubMed ID: 28217212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket.
    Nishida E; Miyaji H; Kato A; Takita H; Iwanaga T; Momose T; Ogawa K; Murakami S; Sugaya T; Kawanami M
    Int J Nanomedicine; 2016; 11():2265-77. PubMed ID: 27307729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Safe clinical use of carbon nanotubes as innovative biomaterials.
    Saito N; Haniu H; Usui Y; Aoki K; Hara K; Takanashi S; Shimizu M; Narita N; Okamoto M; Kobayashi S; Nomura H; Kato H; Nishimura N; Taruta S; Endo M
    Chem Rev; 2014 Jun; 114(11):6040-79. PubMed ID: 24720563
    [No Abstract]   [Full Text] [Related]  

  • 12. Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films.
    Kopova I; Bacakova L; Lavrentiev V; Vacik J
    Int J Mol Sci; 2013 Apr; 14(5):9182-204. PubMed ID: 23624607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guided bone regeneration using rhGDF-5- and rhBMP-2-coated natural bone mineral in rat calvarial defects.
    Schwarz F; Ferrari D; Sager M; Herten M; Hartig B; Becker J
    Clin Oral Implants Res; 2009 Nov; 20(11):1219-30. PubMed ID: 19719740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histomorphometric evaluation of natural mineral combined with a synthetic cell-binding peptide (P-15) in critical-size defects in the rat calvaria.
    Artzi Z; Kozlovsky A; Nemcovsky CE; Moses O; Tal H; Rohrer MD; Prasad HS; Weinreb M
    Int J Oral Maxillofac Implants; 2008; 23(6):1063-70. PubMed ID: 19216275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth factors and bone regeneration. Implications of barrier membranes.
    Zellin G
    Swed Dent J Suppl; 1998; 129():7-65. PubMed ID: 9672999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of nanocarbon sizes on the cellular uptake].
    Zhang M; Yudasaka M
    Yakugaku Zasshi; 2013; 133(2):151-6. PubMed ID: 23370506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect.
    Kasai T; Matsumura S; Iizuka T; Shiba K; Kanamori T; Yudasaka M; Iijima S; Yokoyama A
    Nanotechnology; 2011 Feb; 22(6):065102. PubMed ID: 21212475
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.