BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21212555)

  • 1. Stereochemical structure and intermolecular interaction of complexes of (-)-Gallocatechin-3-O-gallate and caffeine.
    Tsutsumi H; Sato T; Ishizu T
    Chem Pharm Bull (Tokyo); 2011; 59(1):100-5. PubMed ID: 21212555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Configurational studies of complexes of tea catechins with caffeine and various cyclodextrins.
    Ishizu T; Kajitani S; Tsutsumi H; Sato T; Yamamoto H; Hirata C
    Planta Med; 2011 Jul; 77(11):1099-109. PubMed ID: 21472646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Offset pi-pi interaction in crystal structure of (-)-gallocatechin-3-O-gallate.
    Tsutsumi H; Sato T; Ishizu T
    Chem Pharm Bull (Tokyo); 2010 Apr; 58(4):572-4. PubMed ID: 20410646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study of stereochemical structures of complex of tea catechins and caffeine].
    Tsutsumi H
    Yakugaku Zasshi; 2012; 132(8):925-31. PubMed ID: 22864351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of precipitate of creaming down by (-)-epigallocatechin-3-O-gallate and caffeine.
    Ishizu T; Tsutsumi H; Kinoshita Y; Mukaida H; Sato T; Kajitani S
    Chem Pharm Bull (Tokyo); 2014; 62(6):552-8. PubMed ID: 24881661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Configurational studies of complexes of various tea catechins and caffeine in crystal state.
    Tsutsumi H; Kinoshita Y; Sato T; Ishizu T
    Chem Pharm Bull (Tokyo); 2011; 59(8):1008-15. PubMed ID: 21804246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diastereomeric difference of inclusion modes between (-)-epicatechin gallate, (-)-epigallocatechin gallate and (+)-gallocatechin gallate, with beta-cyclodextrin in aqueous solvent.
    Ishizu T; Kajitani S; Tsutsumi H; Yamamoto H; Harano K
    Magn Reson Chem; 2008 May; 46(5):448-56. PubMed ID: 18318450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of creaming precipitate of tea catechins and caffeine in aqueous solution.
    Sato T; Kinoshita Y; Tsutsumi H; Yamamoto H; Ishizu T
    Chem Pharm Bull (Tokyo); 2012; 60(9):1182-7. PubMed ID: 22976328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Capture Using the Precipitate of Creaming-Down by (-)-Epigallocatechin-3-O-gallate.
    Tsutsumi H; Sato A; Fujino S; Fujioka Y; Ishizu T
    Chem Pharm Bull (Tokyo); 2019; 67(5):501-504. PubMed ID: 31061378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR spectroscopic characterization of inclusion complexes comprising cyclodextrins and gallated catechins in aqueous solution: cavity size dependency.
    Ishizu T; Tsutsumi H; Yamamoto H; Harano K
    Magn Reson Chem; 2009 Apr; 47(4):283-7. PubMed ID: 19089883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Creaming Down Based on Chemical Characterization of a Complex of Caffeine and Tea Catechins.
    Ishizu T; Tsutsumi H; Sato T
    Chem Pharm Bull (Tokyo); 2016; 64(7):676-86. PubMed ID: 27373623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral Recognition of Pharmaceuticals Having a Xanthine Skeleton by (-)-Epigallocatechin-3-O-gallate in Water.
    Tsutsumi H; Tanabe H; Ishizu T
    Chem Pharm Bull (Tokyo); 2018; 66(6):620-623. PubMed ID: 29863063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and intramolecular flexibility of beta-cyclodextrin complex with (-)-epigallocatechin gallate in aqueous solvent.
    Ishizu T; Hirata C; Yamamoto H; Harano K
    Magn Reson Chem; 2006 Aug; 44(8):776-83. PubMed ID: 16705621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irreversible sediment formation in green tea infusions.
    Xu YQ; Chen GS; Wang QS; Yuan HB; Feng CH; Yin JF
    J Food Sci; 2012 Mar; 77(3):C298-302. PubMed ID: 22329921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding energy of tea catechin/caffeine complexes in water evaluated by titration experiments with 1H-NMR.
    Hayashi N; Ujihara T; Kohata K
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2512-8. PubMed ID: 15618622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex Structures of Monoglucosylrutin with ent-Gallocatechin-3- O-gallate and Epigallocatechin-3- O-gallate in Aqueous Solutions and the Mechanism of Color Change Induced by Complexation.
    Ujihara T; Hayashi N
    J Nat Prod; 2019 Jan; 82(1):2-8. PubMed ID: 30589259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of Catechin Molecules in Water: Quantitative Binding Study and Complex Structure Analysis.
    Ujihara T; Hayashi N
    J Nat Prod; 2016 Jan; 79(1):66-73. PubMed ID: 26720794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and stabilization of (-)-gallocatechin gallate under various experimental conditions and analyses of its epimerization, auto-oxidation, and degradation by LC-MS.
    Wu QQ; Liang YF; Ma SB; Li H; Gao WY
    J Sci Food Agric; 2019 Oct; 99(13):5984-5993. PubMed ID: 31215023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UHPLC determination of catechins for the quality control of green tea.
    Naldi M; Fiori J; Gotti R; Périat A; Veuthey JL; Guillarme D; Andrisano V
    J Pharm Biomed Anal; 2014 Jan; 88():307-14. PubMed ID: 24103292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Capture and Conformational Change of Diketopiperazines Containing Proline Residues by Epigallocatechin-3-O-gallate in Water.
    Ishizu T; Tokunaga M; Fukuda M; Matsumoto M; Goromaru T; Takemoto S
    Chem Pharm Bull (Tokyo); 2021; 69(6):585-589. PubMed ID: 34078804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.