BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21212836)

  • 1. Conditional Differences in Mean Reaction Time Explain Effects of Response Congruency, but not Accuracy, on Posterior Medial Frontal Cortex Activity.
    Carp J; Kim K; Taylor SF; Fitzgerald KD; Weissman DH
    Front Hum Neurosci; 2010; 4():231. PubMed ID: 21212836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The congruency effect in the posterior medial frontal cortex is more consistent with time on task than with response conflict.
    Weissman DH; Carp J
    PLoS One; 2013; 8(4):e62405. PubMed ID: 23638070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural congruency effects in the multi-source interference task vanish in healthy youth after controlling for conditional differences in mean RT.
    Kim K; Carp J; Fitzgerald KD; Taylor SF; Weissman DH
    PLoS One; 2013; 8(4):e60710. PubMed ID: 23613739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of performance-monitoring function in the posterior medial frontal cortex.
    Fitzgerald KD; Perkins SC; Angstadt M; Johnson T; Stern ER; Welsh RC; Taylor SF
    Neuroimage; 2010 Feb; 49(4):3463-73. PubMed ID: 19913101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adjustments of selective attention to response conflict - controlling for perceptual conflict, target-distractor identity, and congruency level sequence pertaining to the congruency sequence effect.
    Tomat M; Wendt M; Luna-Rodriguez A; Jacobsen T
    Atten Percept Psychophys; 2021 Aug; 83(6):2531-2550. PubMed ID: 33948882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Congruency sequence effects are driven by previous-trial congruency, not previous-trial response conflict.
    Weissman DH; Carp J
    Front Psychol; 2013; 4():587. PubMed ID: 24027550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Posterior Medial Frontal Cortex Function in Pediatric Obsessive-Compulsive Disorder.
    Fitzgerald KD; Liu Y; Johnson TD; Moser JS; Marsh R; Hanna GL; Taylor SF
    J Am Acad Child Adolesc Psychiatry; 2018 Jun; 57(6):397-406. PubMed ID: 29859555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the role of the posterior medial frontal cortex in social conflict processing.
    Wake SJ; Aoki R; Nakahara K; Izuma K
    Neuropsychologia; 2019 Sep; 132():107124. PubMed ID: 31220506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The typical development of posterior medial frontal cortex function and connectivity during task control demands in youth 8-19years old.
    Liu Y; Angstadt M; Taylor SF; Fitzgerald KD
    Neuroimage; 2016 Aug; 137():97-106. PubMed ID: 27173761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood.
    Grinband J; Savitskaya J; Wager TD; Teichert T; Ferrera VP; Hirsch J
    Neuroimage; 2011 Jul; 57(2):303-11. PubMed ID: 21168515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural disconnection of the posterior medial frontal cortex reduces speech error monitoring.
    McCall JD; Vivian Dickens J; Mandal AS; DeMarco AT; Fama ME; Lacey EH; Kelkar A; Medaglia JD; Turkeltaub PE
    Neuroimage Clin; 2022; 33():102934. PubMed ID: 34995870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human medial frontal cortex activity predicts learning from errors.
    Hester R; Barre N; Murphy K; Silk TJ; Mattingley JB
    Cereb Cortex; 2008 Aug; 18(8):1933-40. PubMed ID: 18063560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posterior medial frontal cortex activity predicts post-error adaptations in task-related visual and motor areas.
    Danielmeier C; Eichele T; Forstmann BU; Tittgemeyer M; Ullsperger M
    J Neurosci; 2011 Feb; 31(5):1780-9. PubMed ID: 21289188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conflict-monitoring theory in overtime: Is temporal learning a viable explanation for the congruency sequence effect?
    Spinelli G; Lupker SJ
    J Exp Psychol Hum Percept Perform; 2022 May; 48(5):497-530. PubMed ID: 35389710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proactive and reactive processes in the medial frontal cortex: an electrophysiological study.
    Oliveira FT; Hickey C; McDonald JJ
    PLoS One; 2014; 9(1):e84351. PubMed ID: 24404160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain Activations Related to Saccadic Response Conflict are not Sensitive to Time on Task.
    Beldzik E; Domagalik A; Oginska H; Marek T; Fafrowicz M
    Front Hum Neurosci; 2015; 9():664. PubMed ID: 26696871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological correlates of crossmodal visual distractor congruency effects: evidence for response conflict.
    Forster B; Pavone EF
    Cogn Affect Behav Neurosci; 2008 Mar; 8(1):65-73. PubMed ID: 18405047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholine mediates behavioral and neural post-error control.
    Danielmeier C; Allen EA; Jocham G; Onur OA; Eichele T; Ullsperger M
    Curr Biol; 2015 Jun; 25(11):1461-8. PubMed ID: 25959965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a more sophisticated response representation in theories of medial frontal performance monitoring: The effects of motor similarity and motor asymmetries.
    Hochman EY; Orr JM; Gehring WJ
    Cereb Cortex; 2014 Feb; 24(2):414-25. PubMed ID: 23064106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional accuracy in response interference tasks: Evidence from the Eriksen flanker task and the spatial conflict task.
    Stins JF; Polderman JC; Boomsma DI; de Geus EJ
    Adv Cogn Psychol; 2008 Jul; 3(3):409-17. PubMed ID: 20517524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.