These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 21212888)
1. Long distance energy transfer in a polymer matrix doped with a perylene dye. Fennel F; Lochbrunner S Phys Chem Chem Phys; 2011 Feb; 13(8):3527-33. PubMed ID: 21212888 [TBL] [Abstract][Full Text] [Related]
2. Exciton migration by ultrafast Förster transfer in highly doped matrixes. Schlosser M; Lochbrunner S J Phys Chem B; 2006 Mar; 110(12):6001-9. PubMed ID: 16553409 [TBL] [Abstract][Full Text] [Related]
3. One-dimensional exciton diffusion in perylene bisimide aggregates. Marciniak H; Li XQ; Würthner F; Lochbrunner S J Phys Chem A; 2011 Feb; 115(5):648-54. PubMed ID: 21192672 [TBL] [Abstract][Full Text] [Related]
4. Electronic energy migration in solid versus liquid host matrices for concentrated perylenediimide dye solutions. Colby KA; Bardeen CJ J Phys Chem A; 2011 Jul; 115(26):7574-81. PubMed ID: 21648422 [TBL] [Abstract][Full Text] [Related]
5. Electronic energy migration on different time scales: concentration dependence of the time-resolved anisotropy and fluorescence quenching of Lumogen Red in poly(methyl methacrylate). Colby KA; Burdett JJ; Frisbee RF; Zhu L; Dillon RJ; Bardeen CJ J Phys Chem A; 2010 Mar; 114(10):3471-82. PubMed ID: 20170138 [TBL] [Abstract][Full Text] [Related]
6. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions. Kupstat A; Ritschel T; Kumke MU Bioconjug Chem; 2011 Dec; 22(12):2546-57. PubMed ID: 22073970 [TBL] [Abstract][Full Text] [Related]
7. Self-trapping limited exciton diffusion in a monomeric perylene crystal as revealed by femtosecond transient absorption microscopy. Yago T; Tamaki Y; Furube A; Katoh R Phys Chem Chem Phys; 2008 Aug; 10(30):4435-41. PubMed ID: 18654683 [TBL] [Abstract][Full Text] [Related]
8. Photovoltaic charge generation in organic semiconductors based on long-range energy transfer. Coffey DC; Ferguson AJ; Kopidakis N; Rumbles G ACS Nano; 2010 Sep; 4(9):5437-45. PubMed ID: 20735062 [TBL] [Abstract][Full Text] [Related]
9. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles. Saini S; Srinivas G; Bagchi B J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043 [TBL] [Abstract][Full Text] [Related]
10. Exciton trapping in pi-conjugated materials: a quantum-chemistry-based protocol applied to perylene bisimide dye aggregates. Fink RF; Seibt J; Engel V; Renz M; Kaupp M; Lochbrunner S; Zhao HM; Pfister J; Würthner F; Engels B J Am Chem Soc; 2008 Oct; 130(39):12858-9. PubMed ID: 18767851 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096 [TBL] [Abstract][Full Text] [Related]
12. FRET and ligand related NON-FRET processes in single quantum dot-perylene bisimide assemblies. Kowerko D; Schuster J; Amecke N; Abdel-Mottaleb M; Dobrawa R; Würthner F; von Borczyskowski C Phys Chem Chem Phys; 2010 Apr; 12(16):4112-23. PubMed ID: 20379502 [TBL] [Abstract][Full Text] [Related]
13. Energy transfer in calixarene-based cofacial-positioned perylene bisimide arrays. Hippius C; Schlosser F; Vysotsky MO; Böhmer V; Würthner F J Am Chem Soc; 2006 Mar; 128(12):3870-1. PubMed ID: 16551069 [TBL] [Abstract][Full Text] [Related]
14. Exciton migration in rigid-rod conjugated polymers: an improved Förster model. Hennebicq E; Pourtois G; Scholes GD; Herz LM; Russell DM; Silva C; Setayesh S; Grimsdale AC; Müllen K; Brédas JL; Beljonne D J Am Chem Soc; 2005 Apr; 127(13):4744-62. PubMed ID: 15796541 [TBL] [Abstract][Full Text] [Related]
15. Charge-transfer excitons at organic semiconductor surfaces and interfaces. Zhu XY; Yang Q; Muntwiler M Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979 [TBL] [Abstract][Full Text] [Related]
16. An efficient fluorescence resonance energy transfer (FRET) between pyrene and perylene assembled in a DNA duplex and its potential for discriminating single-base changes. Kashida H; Takatsu T; Sekiguchi K; Asanuma H Chemistry; 2010 Feb; 16(8):2479-86. PubMed ID: 20066689 [TBL] [Abstract][Full Text] [Related]
17. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. Sindbert S; Kalinin S; Nguyen H; Kienzler A; Clima L; Bannwarth W; Appel B; Müller S; Seidel CA J Am Chem Soc; 2011 Mar; 133(8):2463-80. PubMed ID: 21291253 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional energy transport in highly luminescent host-guest crystals: a quantitative experimental and theoretical study. Poulsen L; Jazdzyk M; Communal JE; Sancho-García JC; Mura A; Bongiovanni G; Beljonne D; Cornil J; Hanack M; Egelhaaf HJ; Gierschner J J Am Chem Soc; 2007 Jul; 129(27):8585-93. PubMed ID: 17564450 [TBL] [Abstract][Full Text] [Related]
19. Nature of low-lying excited states in H-aggregated perylene bisimide dyes: results of TD-LRC-DFT and the mixed exciton model. Pan F; Gao F; Liang W; Zhao Y J Phys Chem B; 2009 Nov; 113(44):14581-7. PubMed ID: 19863136 [TBL] [Abstract][Full Text] [Related]
20. Theory of exciton transfer and diffusion in conjugated polymers. Barford W; Tozer OR J Chem Phys; 2014 Oct; 141(16):164103. PubMed ID: 25362268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]