These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 21212893)
1. Catalytic activity of a ΞΆ-class zinc and cadmium containing carbonic anhydrase. Compared work mechanisms. Amata O; Marino T; Russo N; Toscano M Phys Chem Chem Phys; 2011 Feb; 13(8):3468-77. PubMed ID: 21212893 [TBL] [Abstract][Full Text] [Related]
2. A comparative study of the catalytic mechanisms of the zinc and cadmium containing carbonic anhydrase. Marino T; Russo N; Toscano M J Am Chem Soc; 2005 Mar; 127(12):4242-53. PubMed ID: 15783206 [TBL] [Abstract][Full Text] [Related]
3. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Xu Y; Feng L; Jeffrey PD; Shi Y; Morel FM Nature; 2008 Mar; 452(7183):56-61. PubMed ID: 18322527 [TBL] [Abstract][Full Text] [Related]
4. Protonation and reactivity towards carbon dioxide of the mononuclear tetrahedral zinc and cobalt hydroxide complexes, [Tp(Bu)t(,Me)]ZnOH and [Tp(Bu)t(,Me)]CoOH: comparison of the reactivity of the metal hydroxide function in synthetic analogues of carbonic anhydrase. Bergquist C; Fillebeen T; Morlok MM; Parkin G J Am Chem Soc; 2003 May; 125(20):6189-99. PubMed ID: 12785851 [TBL] [Abstract][Full Text] [Related]
5. Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii. Alterio V; Langella E; Viparelli F; Vullo D; Ascione G; Dathan NA; Morel FM; Supuran CT; De Simone G; Monti SM Biochimie; 2012 May; 94(5):1232-41. PubMed ID: 22381359 [TBL] [Abstract][Full Text] [Related]
6. Allene as the parent substrate in zinc-mediated biomimetic hydration reactions of cumulenes. Jahn BO; Eger WA; Anders E J Org Chem; 2008 Nov; 73(21):8265-78. PubMed ID: 18847243 [TBL] [Abstract][Full Text] [Related]
7. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity. Lesburg CA; Huang C; Christianson DW; Fierke CA Biochemistry; 1997 Dec; 36(50):15780-91. PubMed ID: 9398308 [TBL] [Abstract][Full Text] [Related]
8. Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Park H; Song B; Morel FM Environ Microbiol; 2007 Feb; 9(2):403-13. PubMed ID: 17222138 [TBL] [Abstract][Full Text] [Related]
9. Observation of a calcium-binding site in the gamma-class carbonic anhydrase from Pyrococcus horikoshii. Jeyakanthan J; Rangarajan S; Mridula P; Kanaujia SP; Shiro Y; Kuramitsu S; Yokoyama S; Sekar K Acta Crystallogr D Biol Crystallogr; 2008 Oct; 64(Pt 10):1012-9. PubMed ID: 18931408 [TBL] [Abstract][Full Text] [Related]
10. Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II. Xue Y; Liljas A; Jonsson BH; Lindskog S Proteins; 1993 Sep; 17(1):93-106. PubMed ID: 7901850 [TBL] [Abstract][Full Text] [Related]
11. Structure-based design of an intramolecular proton transfer site in murine carbonic anhydrase V. Heck RW; Boriack-Sjodin PA; Qian M; Tu C; Christianson DW; Laipis PJ; Silverman DN Biochemistry; 1996 Sep; 35(36):11605-11. PubMed ID: 8794740 [TBL] [Abstract][Full Text] [Related]
12. Disruption of the active site solvent network in carbonic anhydrase II decreases the efficiency of proton transfer. Jackman JE; Merz KM; Fierke CA Biochemistry; 1996 Dec; 35(51):16421-8. PubMed ID: 8987973 [TBL] [Abstract][Full Text] [Related]
13. Cadmium-containing carbonic anhydrase CDCA1 in marine diatom Thalassiosira weissflogii. Alterio V; Langella E; De Simone G; Monti SM Mar Drugs; 2015 Mar; 13(4):1688-97. PubMed ID: 25815892 [TBL] [Abstract][Full Text] [Related]
14. Influence of backbone conformations of human carbonic anhydrase II on carbon dioxide hydration: hydration pathways and binding of bicarbonate. Loferer MJ; Tautermann CS; Loeffler HH; Liedl KR J Am Chem Soc; 2003 Jul; 125(29):8921-7. PubMed ID: 12862489 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of the R1 fragment of the cadmium-containing zeta-class carbonic anhydrase from the diatom Thalassiosira weissflogii with anions. Viparelli F; Monti SM; De Simone G; Innocenti A; Scozzafava A; Xu Y; Morel FM; Supuran CT Bioorg Med Chem Lett; 2010 Aug; 20(16):4745-8. PubMed ID: 20630751 [TBL] [Abstract][Full Text] [Related]
16. Carbonic anhydrases as targets for medicinal chemistry. Supuran CT; Scozzafava A Bioorg Med Chem; 2007 Jul; 15(13):4336-50. PubMed ID: 17475500 [TBL] [Abstract][Full Text] [Related]
17. Glutamate and aspartate as proton shuttles in mutants of carbonic anhydrase. Qian M; Tu C; Earnhardt JN; Laipis PJ; Silverman DN Biochemistry; 1997 Dec; 36(50):15758-64. PubMed ID: 9398305 [TBL] [Abstract][Full Text] [Related]
18. Crystal structures of the cadmium- and mercury-substituted metallo-beta-lactamase from Bacteroides fragilis. Concha NO; Rasmussen BA; Bush K; Herzberg O Protein Sci; 1997 Dec; 6(12):2671-6. PubMed ID: 9416622 [TBL] [Abstract][Full Text] [Related]
19. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II. Huang CC; Lesburg CA; Kiefer LL; Fierke CA; Christianson DW Biochemistry; 1996 Mar; 35(11):3439-46. PubMed ID: 8639494 [TBL] [Abstract][Full Text] [Related]
20. Nucleophilic reaction by carbonic anhydrase model zinc compound: characterization of intermediates for CO2 hydration and phosphoester hydrolysis. Echizen T; Ibrahim MM; Nakata K; Izumi M; Ichikawa K; Shiro M J Inorg Biochem; 2004 Aug; 98(8):1347-60. PubMed ID: 15271511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]