BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21212896)

  • 1. Extraction of lifetime distributions from fluorescence decays with application to DNA-base analogues.
    Fogarty AC; Jones AC; Camp PJ
    Phys Chem Chem Phys; 2011 Mar; 13(9):3819-30. PubMed ID: 21212896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new approach to interpretation of heterogeneity of fluorescence decay: effect of induced tautomeric shift and enzyme-->ligand fluorescence resonance energy transfer.
    Wlodarczyk J; Kierdaszuk B
    Biophys Chem; 2006 Sep; 123(2-3):146-53. PubMed ID: 16765509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the origin of multiexponential fluorescence decays from 2-aminopurine-labeled dinucleotides.
    Remington JM; Philip AM; Hariharan M; Kohler B
    J Chem Phys; 2016 Oct; 145(15):155101. PubMed ID: 27782452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.
    Warren SC; Margineanu A; Alibhai D; Kelly DJ; Talbot C; Alexandrov Y; Munro I; Katan M; Dunsby C; French PM
    PLoS One; 2013; 8(8):e70687. PubMed ID: 23940626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence intensity decays of 2-aminopurine solutions: lifetime distribution approach.
    Bharill S; Sarkar P; Ballin JD; Gryczynski I; Wilson GM; Gryczynski Z
    Anal Biochem; 2008 Jun; 377(2):141-9. PubMed ID: 18406333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientational and dynamical heterogeneity of rhodamine 6G terminally attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy.
    Neubauer H; Gaiko N; Berger S; Schaffer J; Eggeling C; Tuma J; Verdier L; Seidel CA; Griesinger C; Volkmer A
    J Am Chem Soc; 2007 Oct; 129(42):12746-55. PubMed ID: 17900110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution analysis for single molecule FRET measurement.
    Okamoto K; Terazima M
    J Phys Chem B; 2008 Jun; 112(24):7308-14. PubMed ID: 18491936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing protein-surface interactions with a series of multi-labeled BSA using fluorescence lifetime microscopy and Förster Energy Resonance Transfer.
    Togashi DM; Ryder AG
    Biophys Chem; 2010 Nov; 152(1-3):55-64. PubMed ID: 20724058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence and Energy Transfer in Dye-Labeled DNA Crystals.
    Melinger JS; Sha R; Mao C; Seeman NC; Ancona MG
    J Phys Chem B; 2016 Dec; 120(48):12287-12292. PubMed ID: 27934217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Aminopurine as a fluorescent probe of DNA conformation and the DNA-enzyme interface.
    Jones AC; Neely RK
    Q Rev Biophys; 2015 May; 48(2):244-79. PubMed ID: 25881643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting human c-Myc promoter duplex DNA with actinomycin D by use of multi-way analysis of quantum-dot-mediated fluorescence resonance energy transfer.
    Gholami S; Kompany-Zareh M
    Anal Bioanal Chem; 2013 Jul; 405(19):6271-80. PubMed ID: 23771525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for the analysis of complex fluorescence decays: sum of Becquerel functions versus sum of exponentials.
    Menezes F; Fedorov A; Baleizão C; Valeur B; Berberan-Santos MN
    Methods Appl Fluoresc; 2013 Jan; 1(1):015002. PubMed ID: 29148435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifiability of models for time-resolved fluorescence with underlying distributions of rate constants.
    Boens N; Van der Auweraer M
    Photochem Photobiol Sci; 2014 Feb; 13(2):422-30. PubMed ID: 24407468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolvability of fluorescence lifetime distributions using phase fluorometry.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Apr; 51(4):587-96. PubMed ID: 3580485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the stretched exponential function to fluorescence lifetime imaging.
    Lee KC; Siegel J; Webb SE; Lévêque-Fort S; Cole MJ; Jones R; Dowling K; Lever MJ; French PM
    Biophys J; 2001 Sep; 81(3):1265-74. PubMed ID: 11509343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed.
    Walsh AJ; Sharick JT; Skala MC; Beier HT
    Biomed Opt Express; 2016 Apr; 7(4):1385-99. PubMed ID: 27446663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybridization-responsive fluorescent DNA probes containing the adenine analog 2-aminopurine.
    Kourentzi KD; Fox GE; Willson RC
    Anal Biochem; 2003 Nov; 322(1):124-6. PubMed ID: 14705788
    [No Abstract]   [Full Text] [Related]  

  • 19. Simultaneous DNA binding and bending by EcoRV endonuclease observed by real-time fluorescence.
    Hiller DA; Fogg JM; Martin AM; Beechem JM; Reich NO; Perona JJ
    Biochemistry; 2003 Dec; 42(49):14375-85. PubMed ID: 14661948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved maximum entropy method for the analysis of fluorescence spectroscopy data: evaluating zero-time shift and assessing its effect on the determination of fluorescence lifetimes.
    Esposito R; Mensitieri G; de Nicola S
    Analyst; 2015 Dec; 140(24):8138-47. PubMed ID: 26541293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.