These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21212962)

  • 1. Enzymatic digestion in stomachless fishes: how a simple gut accommodates both herbivory and carnivory.
    Day RD; German DP; Manjakasy JM; Farr I; Hansen MJ; Tibbetts IR
    J Comp Physiol B; 2011 Jul; 181(5):603-13. PubMed ID: 21212962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of ontogenetic dietary shifts and associated gut features in prickleback fishes (Teleostei: Stichaeidae).
    German DP; Gawlicka AK; Horn MH
    Comp Biochem Physiol B Biochem Mol Biol; 2014 Feb; 168():12-8. PubMed ID: 24269211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do herbivorous minnows have "plug-flow reactor" guts? Evidence from digestive enzyme activities, gastrointestinal fermentation, and luminal nutrient concentrations.
    German DP
    J Comp Physiol B; 2009 Aug; 179(6):759-71. PubMed ID: 19363616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why can't young fish eat plants? Neither digestive enzymes nor gut development preclude herbivory in the young of a stomachless marine herbivorous fish.
    Day RD; German DP; Tibbetts IR
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Jan; 158(1):23-9. PubMed ID: 20884371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genome of Anoplarchus purpurescens (Stichaeidae) reflects its carnivorous diet.
    Le N; Heras J; Herrera MJ; German DP; Crummett LT
    Mol Genet Genomics; 2023 Nov; 298(6):1419-1434. PubMed ID: 37690047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic and biochemical evidence of dietary adaptation in a marine herbivorous fish.
    Heras J; Chakraborty M; Emerson JJ; German DP
    Proc Biol Sci; 2020 Feb; 287(1921):20192327. PubMed ID: 32070255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of herbivory in a carnivorous clade of minnows (teleostei: cyprinidae): effects on gut size and digestive physiology.
    German DP; Nagle BC; Villeda JM; Ruiz AM; Thomson AW; Contreras Balderas S; Evans DH
    Physiol Biochem Zool; 2010; 83(1):1-18. PubMed ID: 19929637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogeny and jaw ontogeny of beloniform fishes.
    Lovejoy NR; Iranpour M; Collette BB
    Integr Comp Biol; 2004 Nov; 44(5):366-77. PubMed ID: 21676722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marine-freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: Terapontidae).
    Davis AM; Unmack PJ; Pusey BJ; Johnson JB; Pearson RG
    J Evol Biol; 2012 Jun; 25(6):1163-79. PubMed ID: 22519660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects.
    German DP; Horn MH; Gawlicka A
    Physiol Biochem Zool; 2004; 77(5):789-804. PubMed ID: 15547797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural features of the gastrointestinal tract in some freshwater teleost fish.
    Gargiulo AM
    Ital J Anat Embryol; 2009; 114(1):37-8. PubMed ID: 19845280
    [No Abstract]   [Full Text] [Related]  

  • 12. Partial characterization of digestive proteases in tropical gar Atractosteus tropicus juveniles.
    Guerrero-Zárate R; Alvarez-González CA; Olvera-Novoa MA; Perales-García N; Frías-Quintana CA; Martínez-García R; Contreras-Sánchez WM
    Fish Physiol Biochem; 2014 Aug; 40(4):1021-9. PubMed ID: 24379163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional morphology of digestion in the stomachless, piscivorous needlefishes Tylosurus gavialoides and Strongylura leiura ferox (Teleostei: Beloniformes).
    Manjakasy JM; Day RD; Kemp A; Tibbetts IR
    J Morphol; 2009 Oct; 270(10):1155-65. PubMed ID: 19378267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digestive enzymes along digestive tract of a carnivorous fish Glyptosternum maculatum (Sisoridae, Siluriformes).
    Xiong DM; Xie CX; Zhang HJ; Liu HP
    J Anim Physiol Anim Nutr (Berl); 2011 Feb; 95(1):56-64. PubMed ID: 20487102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinterpreting recapitulation: systematics of needlefishes and their allies (Teleostei: Beloniformes).
    Lovejoy NR
    Evolution; 2000 Aug; 54(4):1349-62. PubMed ID: 11005301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digestive enzymes of three teleost fishes.
    Agrawal VP; Sastry KV; Kaushab SK
    Acta Physiol Acad Sci Hung; 1975; 46(2):93-8. PubMed ID: 14477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maize distillers dried grains with solubles alter dietary digestibility and improve intestine health of pacu,
    Oliveira KRB; Peres H; Oliva-Teles A; Marconi JN; Paulino RR; Diógenes AF; Viegas EMM
    Br J Nutr; 2021 Jun; 125(12):1331-1343. PubMed ID: 32943117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. More than one way to be an herbivore: convergent evolution of herbivory using different digestive strategies in prickleback fishes (Stichaeidae).
    German DP; Sung A; Jhaveri P; Agnihotri R
    Zoology (Jena); 2015 Jun; 118(3):161-70. PubMed ID: 25769813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary preference and digestive enzyme activities as indicators of trophic resource utilization by six species of crab.
    Johnston D; Freeman J
    Biol Bull; 2005 Feb; 208(1):36-46. PubMed ID: 15713811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digestive enzymatic profile of Dentex dentex and response to different dietary formulations.
    Pérez-Jiménez A; Cardenete G; Morales AE; García-Alcázar A; Abellán E; Hidalgo MC
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Sep; 154(1):157-64. PubMed ID: 19501667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.